
Towards	Evaluating	the	Robustness	
of	Neural	Networks

To appear in IEEE S&P, May 22, 2017

Nicholas	Carlini David	Wagner
University	of	California,	Berkeley

1



Adversarial	Example

2



Contents

• Background	and	Formalization
• Neural	Network
• Generating	Adversarial	Examples
• Distance Metrics:	L-2,	L-infinity,	L-0

• Existing	Attacks
• Carlini’s Attacks
• Experiments
• Dataset	&	target	models:	MNIST,	CIFAR-10,	ImageNet
• More	effective	than	previous	methods

3



Formalization

• Neural	network	as	a	function	

• The	goal	of	an	adversary	in	evasion	attack
• Given																																				,	find	an															such	that:

Untargeted:

Or	targeted:	

4

(Typically	softmax()	as	last	layer.)



Distance	Metric

• Lp-norm

• L2-norm

• L∞-norm

• L0-“	norm”

• …
(													)

Which	one	is	the	best	for	vision	task?

5



Existing	Attacks

• L2	Adversary
• L-BFGS

• L∞	Adversary
• Fast	Gradient	Sign	Method
• Iterative	Gradient	Sign	Method

• L0	Adversary
• Jacobian-based	Saliency	Map	Approach

6



L2	Adversary:	L-BFGS

• Straightforward	form,	difficult	to	solve	directly.

• Revised	form

• Softmax-cross-entropy	loss
• Using	L-BFGS-B	as	solver,	which	supports	box	constraints.
• Try	many	values	of	c	to	get	the	minimum	L2

7



L∞	Adversary:	FGSM	&	iterative

• Fast	Gradient	Sign	Method

• Iterative	Gradient	Sign	Method

8



L0 Adversary:	JSMA

• Jacobian-based	Saliency	Map	Approach	(JSMA)

• Basic	idea:	find	the	most	influential	pixels	and	change	to	maximum	or	
minimum

• Iterative	algorithm:
1. If	misclassified,	terminate.
2. Calculate	the	saliency	map	(Jacobian	matrix).
3. Pick	a	pair	of	pixels	that	will	①enlarge	the	score	of	target	label	and	②lower	

the	score	on	other	labels.
4. Modify	the	pixel	pair	to	maximum	(or	minimum)	values.	Goto 1.

9



Carlini’s Attacks

• L2	Adversary

• L0	Adversary

• L∞	Adversary

10



Carlini’s L2	Adversary

• Using	logits-based	objective	instead	of	softmax-cross-entropy loss.

• Handle	box	constraint	by	changing	variables.

• Since																																					,	we	have	
• More	options	on	optimizers:	Adam.

11



Carlini’s L2	Adversary

• Final	form:

• How	to	choose	c?
• Too	large,	always	gets																							,	but	the	L2	distance	might	be	large.
• Too	small,	may	not	get																						,	attack	fails.
• Binary	search!

• Another	trick:	Multiple	starting-point	gradient	descent.

12



Carlini’s L0	Adversary

• Find	out	unimportant	pixels	and	fix	the	values,	iteratively.
• Iterative	algorithm:

1. Run	L2	adversary	on	x’	and	restore	the	fixed	pixels,	terminate	if	attack	fails.
2. Compute	
3. Select	pixel																																								and	fix	it.	Goto 1.

• How	to	select	c	for	L2?
• Search	from	a	very	low	value	until	L2	is	successful.	Double	c	till	threshold.

• Warm-start	trick.
• Compared	with	JSMA
• Grows	Vs.	Shrinks	an	allowed	set;		Less	like	salt	and	pepper	perturbations.

13



Carlini’s L∞	Adversary

• Naïve form

• Only	penalize	the	(single)	largest	entry,	easy	to	get	oscillating.
• Revised form

• Reduce	tau	(x0.9)	iteratively	if	all	entries	smaller	than	tau.
• Choose	c:	the	same	as	L0
• Warm-start	iteration.

14



Experimental	Results

• Produce	adversarial	examples	with	smaller	Lp
• Logits-based	objective	function	instead	of	loss
• Handle	box	constraint	by	using	tanh()
• Tricks:	warm-start	search,	multi	starting	points.
• …

• Effective	on	Defensive	distillation.
• Bypassing	softmax().

• Significantly	slower	(not	suited	for	adversarial	training)
• L0:	2x	– 10x	slower	than	optimized	JSMA
• L2 and	L∞	:	10x	– 100x	slower.

15



Conclusion

• Improved	L2	,	L∞			and	L0 attack	methods.
• Proved	defensive	distillation	is	not	a	good	defense.
• Towards	evaluation	of	robustness.

16


