Towards Evaluating the Robustness of Neural Networks

To appear in IEEE S&P, May 22, 2017

Nicholas Carlini David Wagner

University of California, Berkeley

Adversarial Example

x "panda" 57.7% confidence $+.007 \times$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Contents

- Background and Formalization
 - Neural Network
 - Generating Adversarial Examples
 - Distance Metrics: L-2, L-infinity, L-0
- Existing Attacks
- Carlini's Attacks
- Experiments
 - Dataset & target models: MNIST, CIFAR-10, ImageNet
 - More effective than previous methods

Formalization

• Neural network as a function $g: X \to Y$

 $g(\mathbf{x}) = f_L(f_{L-1}(\dots((f_1(\mathbf{x})))))$ (Typically softmax() as last layer.)

- The goal of an adversary in evasion attack
 - Given $\mathbf{x} \in X$ and $g(\cdot)$, find an $\mathbf{x}' \in X$ such that:

Untargeted: $g(\mathbf{x}) \neq g(\mathbf{x}') \land \Delta(\mathbf{x}, \mathbf{x}') \leq \varepsilon$ Or <u>targeted</u>: $g(\mathbf{x}) = l \land \Delta(\mathbf{x}, \mathbf{x}') \leq \varepsilon$

Distance Metric

- *L*^p-norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}$
 - L²-norm $\|x\|_2 = ig(x_1^2 + x_2^2 + \dots + x_n^2ig)^{rac{1}{2}}$
 - $\mathcal{L}^{\infty} ext{-norm} = \max\left\{ |x_1|, |x_2|, \dots, |x_n|
 ight\}$
 - L^{0} -" norm" $|x_1|^0 + |x_2|^0 + \dots + |x_n|^0$ ($0^0 = 0$) • ...

Which one is the best for vision task?

Existing Attacks

- L² Adversary
 - L-BFGS
- L[∞] Adversary
 - Fast Gradient Sign Method
 - Iterative Gradient Sign Method
- L⁰ Adversary
 - Jacobian-based Saliency Map Approach

• Straightforward form, difficult to solve directly.

minimize
$$||x - x'||_2^2$$

such that $C(x') = l$
 $x' \in [0, 1]^n$

• Revised form

minimize
$$c \cdot ||x - x'||_2^2 + \log_{F,l}(x')$$

such that $x' \in [0, 1]^n$

- Softmax-cross-entropy loss
- Using L-BFGS-B as solver, which supports box constraints.
- Try many values of c to get the minimum L^2

L^{∞} Adversary: FGSM & iterative

• Fast Gradient Sign Method

$$x' = x - \epsilon \cdot \operatorname{sign}(\nabla \operatorname{loss}_{F,t}(x))$$

• Iterative Gradient Sign Method

$$\begin{aligned} x'_{0} &= x \\ x'_{i} &= \operatorname{clip}_{\epsilon}(x'_{i-1} - \alpha \cdot \operatorname{sign}(\nabla \operatorname{loss}_{F,t}(x'_{i-1}))) \end{aligned}$$

L⁰ Adversary: JSMA

- Jacobian-based Saliency Map Approach (JSMA)
- Basic idea: find the most influential pixels and change to maximum or minimum
- Iterative algorithm:
 - 1. If misclassified, terminate.
 - 2. Calculate the saliency map (Jacobian matrix).
 - 3. Pick a pair of pixels that will ①enlarge the score of target label and ②lower the score on other labels.
 - 4. Modify the pixel pair to maximum (or minimum) values. Goto 1.

Carlini's Attacks

- L² Adversary
- L⁰ Adversary
- L[∞] Adversary

Carlini's L² Adversary

Using logits-based objective instead of softmax-cross-entropy loss.

$$C(x+\delta) = t \text{ if and only if } f(x+\delta) \le 0$$

$$f_6(x') = (\max_{i \ne t} (Z(x')_i) - Z(x')_t)^+$$

• Handle box constraint by changing variables.

$$\delta_i = \frac{1}{2}(\tanh(w_i) + 1) - x_i$$

- Since $-1 \leq anh(w_i) \leq 1$, we have $0 \leq x_i + \delta_i \leq 1$
- More options on optimizers: Adam.

- Final form: minimize $\|\frac{1}{2}(\tanh(w) + 1) - x\|_2^2 + c \cdot f(\frac{1}{2}(\tanh(w) + 1))$ $f(x') = \max(\max\{Z(x')_i : i \neq t\} - Z(x')_t, -\kappa)$
- How to choose c?
 - Too large, always gets $f(x^*) \leq 0$, but the L2 distance might be large.
 - Too small, may not get $f(x^*) \leq 0$, attack fails.
 - Binary search!
- Another trick: Multiple starting-point gradient descent.

Carlini's L⁰ Adversary

- Find out unimportant pixels and fix the values, iteratively.
- Iterative algorithm:
 - 1. Run L2 adversary on x' and restore the fixed pixels, terminate if attack fails.
 - 2. Compute $g = \nabla f(x + \delta)$
 - 3. Select pixel $i = \arg \min_i g_i \cdot \delta_i$ and fix it. Goto 1.
- How to select c for L2?
 - Search from a very low value until L2 is successful. Double c till threshold.
- Warm-start trick.
- Compared with JSMA
 - Grows Vs. Shrinks an allowed set; Less like salt and pepper perturbations.

Carlini's *L*[∞] Adversary

• Naïve form

minimize
$$c \cdot f(x+\delta) + \|\delta\|_{\infty}$$

- Only penalize the (single) largest entry, easy to get oscillating.
- Revised form minimize $c \cdot f(x + \delta) + \sum_{i} \left[(\delta_i \tau)^+ \right]$
 - Reduce tau (x0.9) iteratively if all entries smaller than tau.
 - Choose c: the same as LO
 - Warm-start iteration.

Experimental Results

- Produce adversarial examples with smaller L^p
 - Logits-based objective function instead of loss
 - Handle box constraint by using tanh()
 - Tricks: warm-start search, multi starting points.
 - ...
- Effective on Defensive distillation.
 - Bypassing softmax().
- Significantly slower (not suited for adversarial training)
 - $L^0: 2x 10x$ slower than optimized JSMA
 - L^2 and L^{∞} : 10x 100x slower.

Conclusion

- Improved L^2 , L^{∞} and L^0 attack methods.
- Proved defensive distillation is not a good defense.
- Towards evaluation of robustness.