LSVRC Winners
2010 - 2015

Presented by Weilin

@ https://qdata.github.io/deep2Read
• **ImageNet**: an image database organized according to the WordNet hierarchy (currently only the nouns), ~500 images per node.

• **LSVRC**: Large Scale Visual Recognition Challenge based on ImageNet. Often referred as *ImageNet Competition/Challenge*.
Common Tasks

- **Image Classification**
- **Object Localization**

Bounding box prediction. Require >50% overlap.
Common Tasks

Image Classification

AlexNet started the Deep Learning era.

Object Localization
Different metrics: Penalize false positives.
Thus, need to detect background.
Fewer classes (200), but more (or none) objects and smaller objects.
Common Tasks

Image Classification

Object Localization

Object Detection

AlexNet started the Deep Learning era.

Image Classification Ended

Common Tasks

<table>
<thead>
<tr>
<th>Year</th>
<th>Image Classification</th>
<th>Object Localization</th>
<th>Object Detection</th>
<th>Top-5 Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AlexNet started the Deep Learning era.

Image Classification Ended

<table>
<thead>
<tr>
<th>Year</th>
<th>Top-5 Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0.153</td>
</tr>
<tr>
<td>2013</td>
<td>0.112</td>
</tr>
<tr>
<td>2014</td>
<td>0.067</td>
</tr>
</tbody>
</table>
Common Tasks

- Image Classification
- Object Localization
- Object Detection
- Scene Classification

AlexNet started the Deep Learning era.

Image Classification Ended
Common Tasks

Image Classification

Object Localization

Object Detection

Scene Classification

AlexNet started the Deep Learning era.

Image Classification Ended

Scene Parsing

Dataset Scale

- **Localization Dataset** (unchanged since 2012)
 - Classes: 1000 categories
 - Training: 1,200,000 labeled images (~1200 images per class)
 - Validation: 50,000 labeled images (~50 images per class)
 - Evaluation: 100,000 images without labels (~100 images per class)
Winners since 2010

2010: NEC-UIUC
2011: XRCE
2012: UvA & UTrento
2013: SuperVision
2014: GoogLeNet
2015: VGG
2016: …

Some other winners include:
- Msra
- Clarifai
- OverFeat-Nyu
- UvA-Euvision
Winners since 2010

2010: NEC-UIUC
2011: SuperVision
2012: ?
2013: GoogLeNet, VGG, …
2014: ?
2015: ?
2016: ?

Feature + Coding + SVM + Ensemble

Dominated by Deep Learning
2010: NEC-UIUC

• Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour, Kai Yu (NEC).

• LiangLiang Cao, Zhen Li, Min-Hsuan Tsai, Xi Zhou, Thomas Huang (UIUC).

• Tong Zhang (Rutgers).

• Link to Slides
2010: NEC-UIUC

- **Low-level Features**: LBP + HOG
 - Local Binary Patterns, Histogram of Oriented Gradients

- **Sparse Coding**: Local coordinate coding (LCC) / Super-vector coding

- **Linear SVM Classification with ASGD**
 - Feature dimension: 82K to 262K
 - Images: 1.2M
 - Classes: 1000
Winners since 2010

2010: NEC-UIUC
2011: XRCE
2012: SuperVision
2013: Clarifai OverFeat-NYU UvA-Euvision
2014: GoogLeNet VGG
2015: MSRA
2016: ...
2011 Classification: XRCE

- Florent Perronnin, Xerox Research Centre Europe (XRCE)
- Jorge Sanchez, XRCE / CIII
- Link to Slides
2011 Classification: XRCE

- **Low-level Features**: 128-d SIFT & 96-d Color, reduced to 64-d with PCA

- Image signatures with **Fisher Vectors** (FV)
 - Output: high-dimensional (e.g. 0.5M dim) and weakly sparse (e.g. half non-zeros)

- Two possible solutions:
 - Dimensionality reduction with PCA, etc. Accuracy Dropped :(
 - Coding with **Product Quantization** (PQ), reduce storage only :)

- **Linear SVM** in the space of FVs.
2011 Localization: UvA & UTrento

- Koen E. A. van de Sande, University of Amsterdam
- Jasper R. R. Uijlings, University of Trento
- Arnold W. M. Smeulders, University of Amsterdam
- Theo Gevers, University of Amsterdam
- Nicu Sebe, University of Trento
- Cees Snoek, University of Amsterdam

- Link to Slides
2011 Localization: UvA & UTrento

- **Selective Search** (vs. Exhaustive Search),
 - Emphasized high recall, efficiency (<10s per image)
 - (Also used in R-CNN for region proposals)
Winners since 2010

2010: NEC-UIUC
2011: SuperVision
2012: GoogLeNet
2013: VGG
2014: …
2015: MSRA
2016: …

XRCE
UvA & UTrento
Clarifai
OverFeat-NYU
UvA-Euvison
2012 Winner: SuperVision (AlexNet)

• Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton

• University of Toronto

• Top-5 error: 0.15 Vs. 0.26 (2nd place)
2012 Winner: SuperVision (AlexNet)

• 5-layer Convolution + 3-layer FC
• Overlapping Pooling
• ReLU Nonlinearity (often tanh before)
• Local Response Normalization (“brightness normalization”)
 • Batch Normalization was in 2015
• Dropout
• Multi-GPU Training
Winners since 2010

- NEC-UIUC
- SuperVision
- GoogLeNet
- VGG
- …
- MSRA
- Clarifai
- OverFeat-NYU
- UvA-Euvision
2013 Winners

• Classification: Clarifai
• Localization: OverFeat-NYU
• Detection: UvA-Euvision
2013 Classification: Clarifai

- Preprocessing: subtracting a per-pixel mean (per-image?)

- Data augmentation:
 - Downsample to 256 pixel
 - Random 224 pixel crops
 - Random horizontal flipping
 - Dropout.

- Model selection with a novel visualization technique based on the deconvolutional networks
2013 Localization: OverFeat-NYU

• A little different from AlexNet:
 • No Contrast Normalization (No Local Norm)
 • Non-overlapping Pooling
 • Smaller stride (4->2), thus larger feature maps in 1st & 2nd layer
• Multi-Scale Classification (?)
• Details on CNN Localization first time
 • Integrated Learning with Classification.
 • Per-class bounding box regression
2013 Detection: UvA-Euvision

- **Selective Search** for region proposals.
- Boxes are represented by **SIFT** Features at multiple scales.
- An efficient **encoding** on boxes. (paper in submission at that time)
- **ConvNet** trained on DET dataset for object presence priors.
Winners since 2010

NEC-UIUC
XRCE UvA & UTrento
SuperVision
Clarifai OverFeat-NYU UvA-Euvisio
GoogLeNet VGG
MSRA

2014 Winners

- Task 1a: Object detection: **NUS**
- Task 1b: Object detection with additional training data: **GoogLeNet**
- Task 2a: Localization: **VGG**
- Task 2b: Localization with additional training data: **Adobe-UIUC**
2014 Detection: NUS

- Jian DONG, Yunchao WEI, min LIN, Wei XIA, Shuicheng YAN (National University of Singapore), Qiang CHEN (IBM Research, Australia)

- **Network In Network** (NIN) as feature extractor. (?)
 - A special modification of CNN, in ICLR 2014

- Augmented training and testing sample.

- Integration of output from traditional framework with SVM.

- Detection based on **R-CNN**
2014 Detection: GoogLeNet

• 22-layer deep network: 21 Conv + 1 FC

• Based on Inception v1

• **Inception** module

 • Multi-scale idea

 • **Hebbian principle**: "Cells that fire together, wire together."

• Local Response Normalization; No Dropout.

• Detection like **R-CNN**.
2014: GoogLeNet (Inception v1)

(a) Inception module, naïve version
(b) Inception module with dimension reductions

Figure 2: Inception module
2014 Localization: VGG (OxfordNet)

- Karen Simonyan, Andrew Zisserman (University of Oxford)
- Runner-up in 2013
- Nothing special on network architecture.
 - Tried hard in fine-tuning hyper parameters?
- Train with crops, test with uncropped images.
- Localization: per-class bounding box regression similar to OverFeat
2014 Localization: Adobe-UIUC

- Hailin Jin, Jianchao Yang, Zhe Lin (Adobe), Zhaowen Wang (UIUC)
- An integrated CNN for both classification and localization (like OverFeat)
- K-means to find bounding box clusters and rank by classification score.
Winners since 2010

NEC-UIUC

2010

XRCE UvA & UTrento

2011

Clarifai OverFeat-NYU UvA-Euvisio

2012

GoogLeNet VGG ...

2013

SuperVision

2014

MSRA

2015

2016

Reference:
ICML 2016 Tutorial on Deep Residual Training