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Introduction

Basic Premise and Motivation

» Classifiers fail catastrophically in the presence of adversarial
perturbations

» While stronger defenses are always being made, even stronger
attacks are discovered; need to stop arms race

» Adversarial training essentially minimizes lower bound on
adversarial loss; fails to generalize to new attacks; worst-case
perturbation can be computed as well, but takes several hours
for single example

» ldea: calculate upper bound on worst-case loss, a certificate,
for single-hidden-layer neural network

» Certificate is differentiable, and thus can be trained along-side
the network



Setup

Score-based Classifiers

v

Goal is to learn C : X — Y where X = R is the input space
and Y ={1,2, ..., k} is the set of k class labels

C is driven by scoring function f/ : X — R for all i € Y s.t.
C(x) = argmaxicy f'(x)

v

v

Pairwise margin: f¥(x) = f/(x) — f(x) for all pairs of classes
(i,4)
Classifier evaluated on 0-1 loss: /(x,y) = I[C(x) # y]

v



Setup

Score-based Classifiers

Focus on linear classifiers and neural nets with one hidden
layer

fi(x) = W.Tx where W; is the ith row of W € R
Scoring function f/(x) = V."a(Wx), where W € R™ and
V € R¥™™ are parameter matrices of 1st and 2nd layer

v

v

v

v

o is non-linear activation where ¢/(z) is bounded between
[0,1]Vz € R



Setup
Attack Model

» Create attack A : X — X that takes test input x and perturbs
it to X

» Only consider perturbations within e: A(x) must be within /s
ball Be(x) = {X | ||X — X||oo < €}
» Adversarial loss: Ia(x,y) = I[[C(A(x)) # y]

» Assume white-box; optimal attack chooses input that
maximizes pairwise margin of incorrect class i:
Aopt(x) = argmaxzep, (xymaxif¥ (X)



Certificate

» First consider binary classifier where Y = {1,2}, WLOG
consider y = 2 as correct class

» Let f(x) = f1(x) — f2(x) be margin of incorrect over correct
class; Aopt(x) = argmaxzep, (x)f(X) is successful if
f(Aopt(x)) >0

» f(Aopt(x)) is intractable to compute so compute upper bound
using tractable relaxation



Certificate

Linear Classifiers

» For (binary) linear classifiers, f(x) = (W; — Wa)Tx
» For any X € B(x), Holder's inequality with ||x — X||sc < €
gives
F(%) = f(x) + (W1 = Wa) (X = x) < f(x) + ¢l |W1 = Wy
» Can compute Agpt(x)i = x;i + esign(Wy; — Wh;)



Certificate

General Classifiers

» For general classifiers, motivated by linear classifier case, take
linear approximation to compute f(Agpt(x))

> £(%) ~ g(%) = f(x) + V()T (% = x) < F(x) + e[ VF(x)llx

» This method corresponds to FGSM, which only works when X
close to x; many proposed defenses defend against this linear
approximation

» Instead, use integration to compute exact f(X) in terms of
gradient along line between x and X

> F(%) = F(x) + [y VA% + (1 — )x)T(% — x)dt <
f(x) + maxgep. (x)€l [V (X)|]1 because t& + (1 — t)x is within
Bc(x) for all t € [0,1]

» Still intractable to compute



Certificate

Two-Layer Neural Networks

v

Recall f(x) = f}(x) — f2(x) = v o(Wx) where
v = Vi — VL € R™ is the difference in second layer weights for
two classes

[|VF(X)|]1 = ||Wrdiag(v)o'(WX)||1 by chain rule
» Use assumption that o/(z) € [0,1]™ for all z € R™ to remove
dependence on x

IV < maxseqo ym||W T diag(v)s]|y

Next, apply identity ||z|[1 = max,c[_1 1) t’z

v

v

v

v

IVF(R)I1 < maxeepo m rep 1,10t W diag(v)s



Certificate

Two-Layer Neural Networks

v

IVF(R)|l < maxeep yym ee—1,1j0t " W diag(v)s
F(%) < F(x) + maxzep, (el [VF(K)[1

Combine above expressions to get f(Agp:(x)) <
f(x)+ emaxse[o’llmle[,l’l]dt-’—WTdiag(v)s = fop(x)

Unfortunately, still involves W T diag(v) which is not
necessarily negative semidefinite; similar to NP-hard
MAXCUT problem

Use semidefinite relaxation to provide another upper bound



Certificate

Semi-definite Relaxation

> Reparameterize so that max,c(o 1jm ¢c[—1,1) t"WTdiag(v)s
becomes maxse[,Ll]m’te[,l,l]d%tT WT diag(v)(1 + s)

Nexl pack the variables into a veclor y € R and the paramelers into a maltrix M

2T = 0 0 1TWT diag(v)
y= { t ] M(w,W) = 0 0 w7 diag(v) |.  (8)
s diag(v)"W1 diag(v)"W 0
In terms of these new objects, our objective takes the form:
L — 1 i
yE[—lljlilJa{.‘%“"“'” Y M. Wy = yﬂ_ﬁ]ﬁ.}?}?ﬁ_dﬂ‘ 1().1(4 W),y ' ). 9)

Note that every valid vector y € [—1, +1]™ "4+ satisfies the constraints yy ™ > Oand (yy');; = 1.
Defining P = yy T, we obtain the following convex semidefinite relaxation of our problem:

def €
z) < fspp(z) = f(z) + = max M(v,W), P). 10
fopl@) < foon(@) % f@)+ 5 max (M(v,W),P) 10)

Note that the optimization of the semidefinite program depends only on the weights v and W and
does not depend on the inputs x, so it only needs to be computed once for a model (v, W).



Certificate

Multi-class

» All results for f(x) = f1?(x) can be generalized to f¥(x)
» Adversarial loss [a(x,y) = [[max;z, f”(A(x)) > 0] can thus

be bounded by a(x,y) = 0 if maxz,fepp(x) <0



Training the Certificate

Objective Function

» Normal training with classification loss Iois(V, W; X, yn) will
push fY(x) to be large, but not necessarily cause second term
in fspp(x) involving MY to be small
» Thus, propose regularized objective
(W*, V) = arﬁ .1:1111 Z bas(V,Wizn, yn) + ; AV r::;,.lfi{:fi-'|gl (MY (V,W),P), (13)
.! e
» Optimizing semidefinite problem is slow, so take advantage of
duality (see paper Appx. A)
(MY (V,W),P) = 1:111111 D - Ao (MY(V, W) — diag(c”)) + 17 max(e, 0),
(14)

1>namm]<

where D = (d + m+ 1) and A}, is the maximum eigenvalue
of B (or 0 if all values are negative)
» Duality allows introduction of additional dual

variables ¢/ € RP that are optimized at same time as V and W
WV et) = ugnunZ(th VWi, yn +2/\” D At (MY(V,W) — diag(c?)) + leax(('”.O)]

max
i#]

(15)



Training the Certificate

Dual Certificate

» Final objective function can be computed efficiently; most
expensive operation is finding max eigenvector, but this can
be done efficiently using iterative methods

» Dual formation also useful because any value of the dual is an

upper bound on optimal value of primal
F9(A(2) < flz) + 51 [D - Mo (M (V[E], W[t]) — diag(e[t]'9)) + 1T max(c[]7,0)], (16)

» Can obtain quick upper bound on worst-case adversarial loss



Other Upper Bounds

» Spectral bound:

FI(AR)) < fopectran() = F10) + eVd|| W2 Vi = V]2

> Frobenius bound:f¥(A(x)) < fZ

frobenius (X) =

FU(x) + eVd||WI|gl| Vi = Vil

» Compare these bounds empirically with proposed bound



Experiments

Procedure

» Evaluate on MNIST, focus on two-layer networks with 500
hidden units; optimize using Tensorflow's Adam
» Consider five different objectives

» Normal training
Frobenius regularization
Spectral regularization
Adversarial training
Proposed objective

» Compare between different upper bounds and to lower bounds

vV vy VvVvyYy



Experiments
Quality of Upper Bound
» For networks not trained with SDP objective, must solve a
SDP at end of training to obtain certificate
» SDP provided tighter upper bounds than Frobenius and
Spectral, but its tightness relative to lower bound varies

(a) NT-NN (b) Fro-NN

Zero-one loss

(c) Spe-NN

(e) SDP-NN

(d) AT-NN

Figure 2: Upper bounds on adversarial error for different networks on MNIST.



Experiments

Training Objective Evaluation
» Optimizing against SDP certificate seemed to make certificate
tighter

> Frebenius and Spectral regularization was not helpful, unlike
SDP

Comparing robustness of networks 10 Attacks on SDP-NN
o = I ~-+ PGD attack
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Figure 3: (a) Upper bound (SDP) and lower bound (PGD) on the adversarial error for different
networks. (b) Error of SDP-NN against 3 different attacks.



Experiments

Comparison of Results

» Compare results to small 72-node variant and full Madry et al.
network: PGD error of 16% and upper bound of 35% for
e=0.1

> Relative looseness of bound likely results from smaller network
depth; currently working on deeper networks

» Kolter Wong (2018) have a very similar work using linear
programs (LP); two methods have comparable results

» Kolter Wong extended work to deeper networks as well



Experiments

Implementation Details

» Implemented in TensorFlow, computed top eigenvector using
Lanczos implementation in SciPy; back off to full SVD in
cases of non-convergence

» Decayed learning rate by factor of 10 every 30 epochs

» On each update, only compute 9 out of 45 top eigenvectors to
speed up process

» Regularization parameters A/ could be unweighted (all equal)
or weighted to favor class pairs which tended to have larger
margins

» Also compared dual bound (computed during training) with
fully optimized bound (solved after training); very close
bounds



Experiments

Implementation Details

Effect of weighting in regularization

- LoTightness of dual certificate for SDP-NN
PGD on weighted .
—  SDP on weighted SDP dual
[ 02 PGD on unweighted @ o8
Q SDP on unweighted ]
o 0.6 o 0.6
c e
g 0.4 g 0.4
G g &
N o> N o>
08 0 0.05 0.10 0.15 0.20 0’8 00 0.05 0.10 0.15 0.20
L €
(a) (b)

Figure 4: (a) Weighted and unweighted regularization schemes. The network produced by weighting
has a better certificate as well as lower error against the PGD attack. (b) The dual certificate of
robustness (SDP dual), obtained automatically during training, is almost as good as the certificate
produced by exactly solving the SDP.



Discussion and Conclusion

> Proposed a method for producing certificates of robustness for
neural networks; showed that training against these
certificates produces a provably robust model

» Possible other approaches to verification include methods
based on Lyapunov functions or to construct families of
networks that are provably robust a priori

» Certificates are useful for air traffic systems, self-driving cars,
security applications, etc.
» Verifying robustness for arbitrary neural networks is hard, but

the results of this work suggest that it is possible to learn
networks that are amenable to verification
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