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Introduction
Basic Premise and Motivation

I Classifiers fail catastrophically in the presence of adversarial
perturbations

I While stronger defenses are always being made, even stronger
attacks are discovered; need to stop arms race

I Adversarial training essentially minimizes lower bound on
adversarial loss; fails to generalize to new attacks; worst-case
perturbation can be computed as well, but takes several hours
for single example

I Idea: calculate upper bound on worst-case loss, a certificate,
for single-hidden-layer neural network

I Certificate is differentiable, and thus can be trained along-side
the network



Setup
Score-based Classifiers

I Goal is to learn C : X → Y where X = Rd is the input space
and Y = {1, 2, ..., k} is the set of k class labels

I C is driven by scoring function f i : X → R for all i ∈ Y s.t.
C (x) = argmaxi∈Y f

i (x)

I Pairwise margin: f ij(x) = f i (x)− f j(x) for all pairs of classes
(i , j)

I Classifier evaluated on 0-1 loss: l(x , y) = I[C (x) 6= y ]



Setup
Score-based Classifiers

I Focus on linear classifiers and neural nets with one hidden
layer

I f i (x) = W T
i x where Wi is the ith row of W ∈ Rkxd

I Scoring function f i (x) = V T
i σ(Wx), where W ∈ Rmxd and

V ∈ Rkxm are parameter matrices of 1st and 2nd layer

I σ is non-linear activation where σ′(z) is bounded between
[0, 1]∀z ∈ R



Setup
Attack Model

I Create attack A : X → X that takes test input x and perturbs
it to x̃

I Only consider perturbations within ε: A(x) must be within l∞
ball Bε(x) = {x̃ | ||x̃ − x ||∞ ≤ ε}

I Adversarial loss: lA(x , y) = I[C (A(x)) 6= y ]

I Assume white-box; optimal attack chooses input that
maximizes pairwise margin of incorrect class i :
Aopt(x) = argmaxx̃∈Bε(x)maxi f

iy (x̃)



Certificate

I First consider binary classifier where Y = {1, 2}, WLOG
consider y = 2 as correct class

I Let f (x) = f 1(x)− f 2(x) be margin of incorrect over correct
class; Aopt(x) = argmaxx̃∈Bε(x)f (x̃) is successful if
f (Aopt(x)) > 0

I f (Aopt(x)) is intractable to compute so compute upper bound
using tractable relaxation



Certificate
Linear Classifiers

I For (binary) linear classifiers, f (x) = (W1 −W2)T x

I For any x̃ ∈ Bε(x), Holder’s inequality with ||x − x̃ ||∞ ≤ ε
gives
f (x̃) = f (x) + (W1 −W2)T (x̃ − x) ≤ f (x) + ε||W1 −W2||1

I Can compute Aopt(x)i = xi + εsign(W1i −W2i )



Certificate
General Classifiers

I For general classifiers, motivated by linear classifier case, take
linear approximation to compute f (Aopt(x))

I f (x̃) ≈ g(x̃) = f (x) +∇f (x)T (x̃ − x) ≤ f (x) + ε||∇f (x)||1
I This method corresponds to FGSM, which only works when x̃

close to x ; many proposed defenses defend against this linear
approximation

I Instead, use integration to compute exact f (x̃) in terms of
gradient along line between x and x̃

I f (x̃) = f (x) +
∫ 1
0 ∇f (tx̃ + (1− t)x)T (x̃ − x)dt ≤

f (x) + maxx̃∈Bε(x)ε||∇f (x̃)||1 because tx̃ + (1− t)x is within
Bε(x) for all t ∈ [0, 1]

I Still intractable to compute



Certificate
Two-Layer Neural Networks

I Recall f (x) = f 1(x)− f 2(x) = vTσ(Wx) where
v = V1 −V2 ∈ Rm is the difference in second layer weights for
two classes

I ||∇f (x̃)||1 = ||WTdiag(v)σ′(Wx̃)||1 by chain rule

I Use assumption that σ′(z) ∈ [0, 1]m for all z ∈ Rm to remove
dependence on x

I ||∇f (x̃)||1 ≤ maxs∈[0,1]m ||W Tdiag(v)s||1
I Next, apply identity ||z ||1 = maxt∈[−1,1]d t

T z

I ||∇f (x̃)||1 ≤ maxs∈[0,1]m,t∈[−1,1]d t
TW Tdiag(v)s



Certificate
Two-Layer Neural Networks

I ||∇f (x̃)||1 ≤ maxs∈[0,1]m,t∈[−1,1]d t
TW Tdiag(v)s

I f (x̃) ≤ f (x) + maxx̃∈Bε(x)ε||∇f (x̃)||1
I Combine above expressions to get f (Aopt(x)) ≤

f (x) + εmaxs∈[0,1]m,t∈[−1,1]d t
TW Tdiag(v)s = fQP(x)

I Unfortunately, still involves W Tdiag(v) which is not
necessarily negative semidefinite; similar to NP-hard
MAXCUT problem

I Use semidefinite relaxation to provide another upper bound



Certificate
Semi-definite Relaxation

I Reparameterize so that maxs∈[0,1]m,t∈[−1,1]d t
TW Tdiag(v)s

becomes maxs∈[−1,1]m,t∈[−1,1]d
1
2 t

TW Tdiag(v)(1 + s)



Certificate
Multi-class

I All results for f (x) = f 12(x) can be generalized to f ij(x)

I Adversarial loss lA(x , y) = I[maxi 6=y f
iy (A(x)) > 0] can thus

be bounded by lA(x , y) = 0 if maxi 6=y f
iy
SDP(x) < 0



Training the Certificate
Objective Function

I Normal training with classification loss lcls(V ,W ; xn, yn) will
push f ij(x) to be large, but not necessarily cause second term
in fSDP(x) involving M ij to be small

I Thus, propose regularized objective

I Optimizing semidefinite problem is slow, so take advantage of
duality (see paper Appx. A)

where D = (d + m + 1) and λ+max is the maximum eigenvalue
of B (or 0 if all values are negative)

I Duality allows introduction of additional dual
variables c ij ∈ RD that are optimized at same time as V and W



Training the Certificate
Dual Certificate

I Final objective function can be computed efficiently; most
expensive operation is finding max eigenvector, but this can
be done efficiently using iterative methods

I Dual formation also useful because any value of the dual is an
upper bound on optimal value of primal

I Can obtain quick upper bound on worst-case adversarial loss



Other Upper Bounds

I Spectral bound:
f ij(A(x)) ≤ f ijspectral(x) = f ij(x) + ε

√
d ||W ||2||Vi − Vj ||2

I Frobenius bound:f ij(A(x)) ≤ f ijfrobenius(x) =

f ij(x) + ε
√
d ||W ||F ||Vi − Vj ||2

I Compare these bounds empirically with proposed bound



Experiments
Procedure

I Evaluate on MNIST, focus on two-layer networks with 500
hidden units; optimize using Tensorflow’s Adam

I Consider five different objectives
I Normal training
I Frobenius regularization
I Spectral regularization
I Adversarial training
I Proposed objective

I Compare between different upper bounds and to lower bounds



Experiments
Quality of Upper Bound

I For networks not trained with SDP objective, must solve a
SDP at end of training to obtain certificate

I SDP provided tighter upper bounds than Frobenius and
Spectral, but its tightness relative to lower bound varies



Experiments
Training Objective Evaluation

I Optimizing against SDP certificate seemed to make certificate
tighter

I Frebenius and Spectral regularization was not helpful, unlike
SDP



Experiments
Comparison of Results

I Compare results to small 72-node variant and full Madry et al.
network: PGD error of 16% and upper bound of 35% for
ε = 0.1

I Relative looseness of bound likely results from smaller network
depth; currently working on deeper networks

I Kolter Wong (2018) have a very similar work using linear
programs (LP); two methods have comparable results

I Kolter Wong extended work to deeper networks as well



Experiments
Implementation Details

I Implemented in TensorFlow, computed top eigenvector using
Lanczos implementation in SciPy; back off to full SVD in
cases of non-convergence

I Decayed learning rate by factor of 10 every 30 epochs

I On each update, only compute 9 out of 45 top eigenvectors to
speed up process

I Regularization parameters λij could be unweighted (all equal)
or weighted to favor class pairs which tended to have larger
margins

I Also compared dual bound (computed during training) with
fully optimized bound (solved after training); very close
bounds



Experiments
Implementation Details



Discussion and Conclusion

I Proposed a method for producing certificates of robustness for
neural networks; showed that training against these
certificates produces a provably robust model

I Possible other approaches to verification include methods
based on Lyapunov functions or to construct families of
networks that are provably robust a priori

I Certificates are useful for air traffic systems, self-driving cars,
security applications, etc.

I Verifying robustness for arbitrary neural networks is hard, but
the results of this work suggest that it is possible to learn
networks that are amenable to verification
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