Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples

M. Cheng¹, J. Yi², H. Zhang¹, P. Chen³, C. Hsieh¹

¹University of California, Davis ²Tencent AI Lab ³IBM Research

arXiv: 1803.01128 Reviewed by : Bill Zhang University of Virginia https://qdata.github.io/deep2Read/

Outline

Introduction

Related Work

Methodology

Experiments

Results

Conclusion

References

Introduction

Basic Premise and Motivation

- There are many attacks for DNNs, but much less for text models
- Attacking a text string is difficult because input space is discrete and output space (if a sequence of words) can be near infinite compared to classification problems
- Targeted attacks are especially difficult because of near infinite output space
- Robustness of seq2seq important because of wide usage in machine translation, text summarization, and speech recognition

Related Work

- Gradient, score, transfer, and decision-based methods for attacking CNN-based models
- FGSM to attack RNN/LSTM-based models
- Reinforcement learning to learn important words to delete in sentiment classification
- Replacing words with typos/synonyms
- Scoring function to find most important words to modify
- Adding misleading sentences for summarization
- GAN to generate examples (only works for untargeted and computationally expensive)

Most previous methods are based on a greedy search

Methodology Seq2Seq

- ► $X = (x_1, x_2, ..., x_N)$ to $Y = (y_1, y_2, ..., y_M)$, where $x_i \in \mathbb{R}^d$ is the embedding vector of each input word
- Each RNN/LSTM cell computes $h_t = f(x_t, h_{t-1})$
- Compute context vector $c = q(h_1, h_2, ..., h_N) = h_N$
- ▶ $z_t = g(y_{t-1}, c)$ and $p_t = softmax(z_t)$ to predict next word

 Crafting against adversarial examples is following optimization problem

$$min_{\delta}L(X+\delta)+\lambda R(\delta)$$

where R is a regularization function to measure magnitude of distortion and L is a loss function

- Common R is l_2 loss, but unsuitable for seq2seq
- Focus on 2 attacks: non-overlapping and targeted; disregard untargeted due to triviality of causing only one-word difference

Methodology

Non-Overlapping Attack

Non-overlapping attack requires every output word in sequence to be different from original output word; If s = s₁, s₂, ..., s_M is the original output sequence and v is output vocabulary, then

$$s_t \neq argmax_{y \in v} z_t^{(y)} \ \forall t = 1, 2, ..., M$$

$$z_t^{(s_t)} < max_{y \in v, y \neq s_t} z_t^{(y)}, \ \forall t = 1, 2, ..., M$$

Thus, let loss be

$$L_{non-overlapping} = \sum_{t=1}^{M} max\{-\epsilon, z_t^{(s_t)} - max_{y \neq s_t}\{z_t^{(y)}\}\}$$

where $\epsilon \ge 0$ is the confidence margin parameter (larger values will lead to more confident output)

Methodology

Targeted Keywords Attack

- Targeted keywords requires the output to have all target keywords in output sequence; does not matter what position
- ► First, define following loss function where K = k₁, k₂, ..., k_{|K|} is list of target keywords

$$L_{targeted} = \sum_{i=1}^{|\mathcal{K}|} \min_{t \in [\mathcal{M}]} \{ \max\{-\epsilon, \max_{y \neq k_i} \{z_t^{(y)}\} - z_t^{(k_i)} \} \}$$

- ► To avoid competing keywords, apply mask m_t(x) = {∞, if argmax_{i∈v}(z⁽ⁱ⁾_t) ∈ K; x, otherwise}
- Final loss function is

$$L_{targeted} = \sum_{i=1}^{|K|} min_{t \in [M]} \{ m_t(max\{-\epsilon, max_{y \neq k_i}\{z_t^{(y)}\} - z_t^{(k_i)}\}) \}$$

Methodology Discrete Input Space

- Naive method is to search for optimal X + δ* in continuous space then search for nearest embedding in word-space W; not effective because final solution likely not a feasible word embedding in W (nearest neighbor could be far away)
- Change optimization function to

$$min_{\delta}L(X + \delta) + \lambda R(\delta)$$
 s.t. $x_i + \delta_i \in \mathbb{W} \ \forall i = 1, 2, ..., N$

at each step of PGD, project current solution back into $\ensuremath{\mathbb{W}}$

 Use Group Lasso regularization to enforce group sparsity so that few words in input are changed

$$R(\delta) = \sum_{t=1}^{N} ||\delta_t||_2$$

Methodology Gradient Regularization

- Common for adversarial example to be located in region with very few embedding vectors; even closest embedding from PGD can be far away
- Add to loss function to make X + δ close to word embedding space

$$min_{\delta}L(X+\delta) + \lambda_1 R(\delta) + \lambda_2 \sum_{i=1}^{N} min_{w_i \in \mathbb{W}} \{ ||x_i + \delta_i - w_j||_2 \}$$

s.t.
$$x_i + \delta_i \in \mathbb{W} \ \forall i = 1, 2, ..., N$$

Experiments Datasets, Seq2Seq Models

- DUC2003, DUC2004, Gigaword for text summarization attack, WMT'16 Multimodal Translation for machine translation
- Implement models on OpenNMT-py, specifically a word-level LSTM encoder and word-based attention decoder

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Use hyperparameters suggested by OpenNMT

 Non-overlapping results: change 2 to 3 words to change 80 % of outputs

DATASET	SUCCESS RATE	BLEU	# CHANGED
GIGAWORD	86.0%	0.828	2.17
DUC2003	85.2%	0.774	2.90
DUC2004	84.2%	0.816	2.50

Results

Text Summarization

 Targeted results: very successful with 1 or 2 target keywords; less successful, but still able to find examples for 3 keywords

DATASEST	K	SUCCESS RATE	BLEU	# CHANGED
	1	99.8%	0.801	2.04
GIGAWORD	2	96.5%	0.523	4.96
	3	43.0%	0.413	8.86
DUC2003	1	99.6%	0.782	2.25
	2	87.6%	0.457	5.57
	3	38.3%	0.376	9.35
DUC2004	1	99.6%	0.773	2.21
	2	87.8%	0.421	5.1
	3	37.4%	0.340	9.3

Results

Text Summarization

- Test significance of each component of objective
 - Removing PGD dropped success to 0%, shows importance of projecting back into input vocabulary word embeddings
 - Removing group lasso does not change success significantly, but does change increase of words changed and decrease BLEU score
 - Removing gradient regularization can lower success rate

DATASET	METHOD	SUCCESS%	BLEU	# CHANGED
	W/o GL	91.4 %	0.166	16.53
GIGAWORD	W/o GR	92.8 %	0.707	4.96
	ALL	96.5%	0.523	4.96
	W/o GL	95.7%	0.225	15.74
DUC2003	W/o GR	87.9%	0.457	5.57
	ALL	87.6%	0.457	5.57
	W/o GL	95.0%	0.212	15.60
DUC2004	W/o GR	87.0 %	0.421	5.14
	ALL	87.8%	0.421	5.14

 Similar to summarization, obtain results for non-overlapping and targeted

METHOD	SUCCESS%	BLEU	# CHANGED
NON-OVERLAP	89.4%	0.349	3.5
1-KEYWORD	100.0%	0.705	1.8
2-KEYWORD	91.0 %	0.303	4.0
3-KEYWORD	69.6%	0.205	5.3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Results

Machine Translation

Once again, test significance of each component

- Removing PGD dropped success to 0%
- Removing group lasso increased success at the cost of of words changed and BLEU
- Removing gradient regularization had small negative impacts on results

METHOD	SUCCESS RATE	BLEU	# CHANGED	
W/o GL	100.0%	0.163	6.4	
W/o GR	91.0%	0.303	4.1	
ALL	91.0%	0.303	4.0	

Results Robustness of Seq2Seq

- Attack methods proposed are effective, as shown by results
- Harder to turn entire seq2seq output into particular sentence (sometimes impossible)

- Easier for human to detect differences in inputs due to discrete input space
- ► Thus, seq2seq is more robust than DNN models

Conclusion

- Seq2sick is a novel framework capable of producing adversarial examples for seq2seq models
- Use PGD to address issue of discrete input space, group lasso to enforce sparsity of distortion, and gradient regularization to further improve success

- Addresses harder problem than previous frameworks which perform untargeted or classification attacks
- Framework is effective, but also recognize robustness of seq2seq compared to DNN

References

https://arxiv.org/pdf/1803.01128.pdf

