
Adversarial Transform Networks
Learning to Generate Adversarial Examples

S. Baluja, I. Fischer

Google Research

arXiv:1703.0938

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/


Outline

Introduction

Adversarial Transformation Networks

MNIST Experiments

ATN Extensions

ImageNet Experiments

Summary



Introduction
Basic Premise and Motivation

I Create a network which learns how to generate adversarial
networks given a model

I Generate either untargeted or targeted examples

I Current approaches include using optimizers, fast single-step
gradients, and iterative variants of gradient-based techniques



Adversarial Transformation Networks
Network, Optimization, and Inference

I Focus on targeted, white-box ATNs

I ATNs transforms an input into an adversarial example against
a target network or set of networks. θ is the parameter vector
of g , f is the target network

gf ,θ(x) : x ∈ X → x ′

I To find gf ,θ, solve following optimization where LX is a loss
function on the input space and LY is a loss function on the
output space to avoid learning identity function

argminθΣxi∈XβLX (gf ,θ(xi ), xi ) + LY (f (gf ,θ(xi )), f (xi ))

I Inference does not require any further gradient calculations or
access to f , so generation is very quick



Adversarial Transformation Networks
Loss Function and Reranking

I LX was picked to be L2 loss

I LY determines whether ATN is targeted; define LY to be
following equation, where t is the target class, y = f (x),
y ′ = f (gf (x)), and r is a reranking function

LY ,t(y
′, y) = L2(y ′, r(y , t))

I r reranks y such that yk < yt , ∀k 6= t and attempts to keep
most of structure from y to minimize distortions; defined
where α > 1 and norm rescales output to be valid probability
distribution

rα(y , t) = norm({αmax(y) if k = t, yk otherwise})



Adversarial Transformation Networks
Example Generation

I Two approaches of generating examples
I Perturbation ATN (P-ATN): Similar to He et al. 2015, set

gf (x) = tanh(x + G (x)), where G (x) is the core function of
gf ; easy to generate small, but effective, perturbations

I Adversarial Autoencoding (AAE): Similar to standard
autoencoders, attempt to reconstruct input subject to
regularization (LY ) and noise

I For both approaches, enforce that x ′ is in X by restricting x ′

to valid input range of f ; adding a tanh function in the last
layer sufficiently restricts the range to [−1, 1]



MNIST Experiments
Procedure

I Train 5 separate models with varying architectures
(combinations of fully connected and convolution layers) and
weight initializations on MNIST

I Baseline accuracy around 98.5-99.1 percent

I Attempt to create an autoencoding ATN using previously
detailed process

I During training of ATN, weights of classifier model are frozen

I Empirically set α = 1.5 for reranking



MNIST Experiments
Optimizing Beta

I Vary β on one various ATN architectures, find average
accuracy on all 10 targets (all trained on original model of 5x5
conv, 5x5 conv, FC, FC); 1 separate network for each target

I Row 1: classifier labeled x ′ as t
I Row 2: classifier labeled x ′ as t that kept previous argmax(y)

in second
I Row 3: argmax(y) in second place



MNIST Experiments
Optimizing Beta

I Smaller beta values more easily fool networks, but at a cost of
losing similarity to original input image



MNIST Experiments
Key Observations

I Transformation maintains empty space; no salt-and-pepper
type noise

I In majority of generated examples, shape does not drastically
change; by training output to maintain rank except for the
top-output, this should be true

I Vertical components seem to be emphasized in some digits
(especially if t = 1)

I Novel aspect of ATN is the rank preservation



ATN Extensions
Multiple Networks

I ATN trained on one classifer generated examples which did
not generalize well to other classifiers, even those with similar
architectures

I ATN trained while minimizing LY for three classifiers
performed better on all three classifiers and also two outside
classifiers



ATN Extensions
Inside Information

I Since treating classifier as white-box, may be helpful to look at
more inside information than just outputs and error derivatives

I Look at hidden unit activations (for practicality, only for
penultimate FC layer)

I Increased conditional success of second position



ATN Extensions
Parallel and Serial ATNs

I First, take 1000 random images from MNIST test set, then
apply each ATN for each digit separately; track how many
ATNs can successfully transform each image

I Next, sequentially apply all 10 ATNs on images
I In parallel application, 283/1000 were transformed

successfully; in serial application, 741/1000 were transformed
successfully

I Likely because each transformation diminished underlying
original image, so only a few pixels needed to be added to
change top class to target

I Order preservation was not maintained in serial application



ImageNet Experiments
Procedure

I Use state-of-the-art Inception ResNet (IR2)

I Trained both AAE and P-ATNs against IR2
I 5 separate architectures for IR2

I IR2-Base-Deconv (AAE, P-ATN)
I IR2-Resize-Conv (AAE)
I IR2-Conv-Deconv (AAE)
I IR2-Conv-FC (P-ATN)

The use of FC layer makes AAE too slow, so only P-ATN used
FC layer

I All 5 architectures were trained with same hyperparameters
for 4 separate targets (binoculars, soccer ball, volcano, zebra)
for a total of 20 ATNs

I Hyperparameters found using grid search using only volcano
target



ImageNet Experiments
Results

I AAE more successful than P-ATN

I P-ATN tends to preserve most of image at cost of small area
with high perturbation, while AAE distributes changes across
image

I AAEs, however, can produce checkerboard patterns, a
common problem in image generation

I For AAEs, many high frequency patterns are replaced by high
frequencies which encode adversarial signal



ImageNet Experiments
Results

I AAE produces more diverse adversarial examples, which may
be useful for adversarial training

I P-ATNs sometimes produces the same perturbation in the
same place for all input examples (similar to DeepDream)



Summary

I ATNs are a fundamentally different approach then previous
gradient descent based approaches for generating adversarial
examples

I ATNs are efficient to train, fast to execute, and produces
diverse examples; may allow for more robust models in future
by improving adversarial training procedures



References

I https://arxiv.org/pdf/1703.09387.pdf

https://arxiv.org/pdf/1703.09387.pdf

	Introduction
	Adversarial Transformation Networks
	MNIST Experiments
	ATN Extensions
	ImageNet Experiments
	Summary

