Adversarial Transform Networks

Learning to Generate Adversarial Examples

S. Baluja, I. Fischer

Google Research

arXiv:1703.0938
Reviewed by : Bill Zhang
University of Virginia
https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Outline

Introduction

Adversarial Transformation Networks
MNIST Experiments

ATN Extensions

ImageNet Experiments

Summary

Introduction

Basic Premise and Motivation

» Create a network which learns how to generate adversarial
networks given a model

> Generate either untargeted or targeted examples

» Current approaches include using optimizers, fast single-step
gradients, and iterative variants of gradient-based techniques

Adversarial Transformation Networks

Network, Optimization, and Inference

» Focus on targeted, white-box ATNs

» ATNs transforms an input into an adversarial example against
a target network or set of networks. 6 is the parameter vector
of g, f is the target network

gro(x):xeX =X

» To find gr g, solve following optimization where Lx is a loss
function on the input space and Ly is a loss function on the
output space to avoid learning identity function

argmingX,.exBLx(gr0(xi), xi) + Ly (f(gr.o(xi)), f(xi))

» Inference does not require any further gradient calculations or
access to f, so generation is very quick

Adversarial Transformation Networks

Loss Function and Reranking

» Lx was picked to be Ly loss
» Ly determines whether ATN is targeted; define Ly to be

following equation, where t is the target class, y = f(x),
y' = f(gr(x)), and r is a reranking function

Ly +(y'.y) = La(y', r(y, 1))

» r reranks y such that y, < y;,Vk # t and attempts to keep
most of structure from y to minimize distortions; defined
where e > 1 and norm rescales output to be valid probability
distribution

ra(y, t) = norm({amax(y) if k = t, yx otherwise})

Adversarial Transformation Networks

Example Generation

» Two approaches of generating examples
» Perturbation ATN (P-ATN): Similar to He et al. 2015, set
gr(x) = tanh(x + G(x)), where G(x) is the core function of
gr; easy to generate small, but effective, perturbations
» Adversarial Autoencoding (AAE): Similar to standard
autoencoders, attempt to reconstruct input subject to
regularization (Ly) and noise

» For both approaches, enforce that x’ is in X by restricting x’

to valid input range of f; adding a tanh function in the last
layer sufficiently restricts the range to [—1, 1]

MNIST Experiments

Procedure

Train 5 separate models with varying architectures
(combinations of fully connected and convolution layers) and
weight initializations on MNIST

» Baseline accuracy around 98.5-99.1 percent

Attempt to create an autoencoding ATN using previously
detailed process

During training of ATN, weights of classifier model are frozen

Empirically set o = 1.5 for reranking

MNIST Experiments

Optimizing Beta

» Vary 3 on one various ATN architectures, find average
accuracy on all 10 targets (all trained on original model of 5x5
conv, 5x5 conv, FC, FC); 1 separate network for each target

» Row 1: classifier labeled x” as t

» Row 2: classifier labeled x’ as t that kept previous argmax(y)
in second

» Row 3: argmax(y) in second place

B:
0.010 0.005 0.001
69.1% 84.1% 95.9%
91.7% 93.4% 95.3%
63.5% 78.6% 91.4%

ATN,
FC — FC—28x28 Image

ATN, 61.8% 77.7% 89.2%
(3x3 Conv)— (3x3 Conv) — 938% 95.8% 974%
(3x3 Conv) — FC — 28x28 Image 58.7% 745% 86.9%
ATN. 66.6% 825% 91.4%
(3x3 Conv)— (3x3 Conv)—(3x3 Conv) 95.5% 06.6% 97.5%

— Deconv: 7x7 — Deconv: 14x14 — 28x28 Image | 64.0% 79.7% 89.1%

MNIST Experiments

Optimizing Beta

» Smaller beta values more easily fool networks, but at a cost of
losing similarity to original input image

actual digit

10

32

after ATNws) applied
transformed to digit

9 8 7 6 5 4
oTCoOOGoo ()

IGO0

weight=0.005 weight=0.001

MNIST Experiments

Key Observations

» Transformation maintains empty space; no salt-and-pepper
type noise

» In majority of generated examples, shape does not drastically
change; by training output to maintain rank except for the
top-output, this should be true

» Vertical components seem to be emphasized in some digits
(especially if t = 1)

> Novel aspect of ATN is the rank preservation

new adversarial (incorrect) classification
image after ATN

original image

actual digit (correct classification)

new adversarial (incorrect) classification
image after ATN

original image

actual digit (correct classification)

new adversarial (incorrect) classification
image after ATN

original image

actual digit (correct classification)

ATN Extensions

Multiple Networks

» ATN trained on one classifer generated examples which did
not generalize well to other classifiers, even those with similar

architectures

» ATN trained while minimizing Ly for three classifiers
performed better on all three classifiers and also two outside

classifiers

Classifier,* Classifier,g Classifier,, er,s Classifier,s

Ist Place Correct 82.5% 15.7% 16.1% 1.7% 28.9%

2nd Place Correct (Conditional) 96.6% 84.7% 89.3% 85.0% 81.8%

2nd Place Correct (Unconditional) 79.7% 15.6% 16.1% 8.4% 26.2%
I} Classifier,* Classifier,g Classifier,;* Classifier,g®* Classifier,s

1st Place Correct 89.9% 37.9% 83.9% 78.7% 70.2%

0.010 2nd Place Correct (Conditional) 96.1% 88.1% 96.1% 95.2% 79.1%

2nd Place Correct (Unconditional) 86.4% 34.4% 80.7% 74.9% 55.9%

1st Place Correct 93.6% 34.7% 88.1% 82.7% 64.1%

0.005 2nd Place Correct (Conditional) 96.8% 88.3% 96.9% 96.4% 73.1%

2nd Place Correct (Unconditional) 90.7% 31.4% 85.3% 79.8% 47.2%

ATN Extensions

Inside Information

» Since treating classifier as white-box, may be helpful to look at
more inside information than just outputs and error derivatives

» Look at hidden unit activations (for practicality, only for
penultimate FC layer)

» Increased conditional success of second position

ATN Extensions

Parallel and Serial ATNs

» First, take 1000 random images from MNIST test set, then
apply each ATN for each digit separately; track how many
ATNSs can successfully transform each image

> Next, sequentially apply all 10 ATNs on images
» In parallel application, 283/1000 were transformed
successfully; in serial application, 741/1000 were transformed
successfully
» Likely because each transformation diminished underlying
original image, so only a few pixels needed to be added to
change top class to target

» Order preservation was not maintained in serial application

ImageNet Experiments

Procedure

Use state-of-the-art Inception ResNet (IR2)

> Trained both AAE and P-ATNs against IR2
» 5 separate architectures for IR2

v

IR2-Base-Deconv (AAE, P-ATN)

IR2-Resize-Conv (AAE)

IR2-Conv-Deconv (AAE)

IR2-Conv-FC (P-ATN)

The use of FC layer makes AAE too slow, so only P-ATN used
FC layer

v VvYyy

All 5 architectures were trained with same hyperparameters
for 4 separate targets (binoculars, soccer ball, volcano, zebra)
for a total of 20 ATNs

Hyperparameters found using grid search using only volcano
target

ImageNet Experiments

Results

AAE more successful than P-ATN

P-ATN tends to preserve most of image at cost of small area
with high perturbation, while AAE distributes changes across

image

AAEs, however, can produce checkerboard patterns, a

common problem in image generation

For AAEs, many high frequency patterns are replaced by high

frequencies which encode adversarial signal

Table 8. IL2 ATN Performance

P-ATN TARGET CLASS ToP-T ACCURACY
BINOCULARS SOCCER BALL VOLCANO ZEBRA
IR2-Base-Deconv 66.0% 56.3% 0.2% 43.2%
IR2-Conv-FC 79.9% 78.8% 0.0% 85.6%
AAE ATN TARGET CLASS TOP-T ACCURACY
BINOCULARS SOCCER BALL VOLCANO ZEBRA
IR2-Base-Deconv 0% A% % 2%
IR2-Resize-Conv 69.8% 61.4% 91.1% 80.2%
IR2-Conv-Decony 56.6% 75.0% 87.3% 79.1%

ImageNet Experiments

Results

» AAE produces more diverse adversarial examples, which may
be useful for adversarial training

» P-ATNs sometimes produces the same perturbation in the
same place for all input examples (similar to DeepDream)

Summary

» ATNs are a fundamentally different approach then previous
gradient descent based approaches for generating adversarial
examples

» ATNs are efficient to train, fast to execute, and produces
diverse examples; may allow for more robust models in future
by improving adversarial training procedures

References

» https://arxiv.org/pdf/1703.09387.pdf

https://arxiv.org/pdf/1703.09387.pdf

	Introduction
	Adversarial Transformation Networks
	MNIST Experiments
	ATN Extensions
	ImageNet Experiments
	Summary

