Adversarial Transform Networks Learning to Generate Adversarial Examples

S. Baluja, I. Fischer

Google Research

arXiv:1703.0938 Reviewed by : Bill Zhang University of Virginia https://qdata.github.io/deep2Read/

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction

Adversarial Transformation Networks

MNIST Experiments

ATN Extensions

ImageNet Experiments

Summary

Introduction

Basic Premise and Motivation

- Create a network which learns how to generate adversarial networks given a model
- Generate either untargeted or targeted examples
- Current approaches include using optimizers, fast single-step gradients, and iterative variants of gradient-based techniques

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adversarial Transformation Networks

Network, Optimization, and Inference

- Focus on targeted, white-box ATNs
- ATNs transforms an input into an adversarial example against a target network or set of networks. θ is the parameter vector of g, f is the target network

$$g_{f, heta}(x): x \in X
ightarrow x'$$

To find g_{f,θ}, solve following optimization where L_X is a loss function on the input space and L_Y is a loss function on the output space to avoid learning identity function

 $\operatorname{argmin}_{\theta} \Sigma_{x_i \in X} \beta L_X(g_{f,\theta}(x_i), x_i) + L_Y(f(g_{f,\theta}(x_i)), f(x_i))$

Inference does not require any further gradient calculations or access to f, so generation is very quick

Adversarial Transformation Networks

Loss Function and Reranking

- L_X was picked to be L_2 loss
- L_Y determines whether ATN is targeted; define L_Y to be following equation, where t is the target class, y = f(x), y' = f(g_f(x)), and r is a reranking function

$$L_{Y,t}(y',y) = L_2(y',r(y,t))$$

▶ *r* reranks *y* such that $y_k < y_t$, $\forall k \neq t$ and attempts to keep most of structure from *y* to minimize distortions; defined where $\alpha > 1$ and *norm* rescales output to be valid probability distribution

$$r_{\alpha}(y, t) = norm(\{\alpha max(y) \text{ if } k = t, y_k \text{ otherwise}\})$$

Adversarial Transformation Networks

Example Generation

- Two approaches of generating examples
 - Perturbation ATN (P-ATN): Similar to He et al. 2015, set $g_f(x) = \tanh(x + G(x))$, where G(x) is the core function of g_f ; easy to generate small, but effective, perturbations
 - Adversarial Autoencoding (AAE): Similar to standard autoencoders, attempt to reconstruct input subject to regularization (L_Y) and noise
- ► For both approaches, enforce that x' is in X by restricting x' to valid input range of f; adding a tanh function in the last layer sufficiently restricts the range to [-1,1]

Procedure

- Train 5 separate models with varying architectures (combinations of fully connected and convolution layers) and weight initializations on MNIST
 - Baseline accuracy around 98.5-99.1 percent
- Attempt to create an autoencoding ATN using previously detailed process
- During training of ATN, weights of classifier model are frozen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Empirically set $\alpha = 1.5$ for reranking

Optimizing Beta

- Vary β on one various ATN architectures, find average accuracy on all 10 targets (all trained on original model of 5x5 conv, 5x5 conv, FC, FC); 1 separate network for each target
 - ▶ Row 1: classifier labeled *x'* as *t*
 - Row 2: classifier labeled x' as t that kept previous argmax(y) in second
 - Row 3: argmax(y) in second place

	β:			
	0.010	0.005	0.001	
ATN	69.1%	84.1%	95.9%	
AIN_a	91.7%	93.4%	95.3%	
$FC \rightarrow FC \rightarrow 28X28$ image	63.5%	78.6%	91.4%	
ATN _b	61.8%	77.7%	89.2%	
$(3x3 \text{ Conv}) \rightarrow (3x3 \text{ Conv}) \rightarrow$	93.8%	95.8%	97.4%	
$(3x3 \text{ Conv}) \rightarrow \text{FC} \rightarrow 28x28 \text{ Image}$	58.7%	74.5%	86.9%	
ATN _c	66.6%	82.5%	91.4%	
$(3x3 \text{ Conv}) \rightarrow (3x3 \text{ Conv}) \rightarrow (3x3 \text{ Conv})$	95.5%	96.6%	97.5%	
\rightarrow Deconv: 7x7 \rightarrow Deconv: 14x14 \rightarrow 28x28 Image	64.0%	79.7%	89.1%	

Optimizing Beta

 Smaller beta values more easily fool networks, but at a cost of losing similarity to original input image

Key Observations

- Transformation maintains empty space; no salt-and-pepper type noise
- In majority of generated examples, shape does not drastically change; by training output to maintain rank except for the top-output, this should be true
- Vertical components seem to be emphasized in some digits (especially if t = 1)
- Novel aspect of ATN is the rank preservation

ATN Extensions

Multiple Networks

- ATN trained on one classifer generated examples which did not generalize well to other classifiers, even those with similar architectures
- ATN trained while minimizing L_Y for three classifiers performed better on all three classifiers and also two outside classifiers

		Clas	sifier _p * (Classifier _{a0}	Classifier _{a1}	Classifier _{a2}	Classifier _{a3}
1st Place Correct		82	2.5%	15.7%	16.1%	7.7%	28.9%
2nd Pl	ace Correct (Conditional)	9	5.6%	84.7%	89.3%	85.0%	81.8%
2nd Plac	e Correct (Unconditional)	7	9.7%	15.6%	16.1%	8.4%	26.2%
β			Classifier _p	* Classifier _{a0}	Classifier _{a1} *	Classifier _{a2} *	Classifier _{a3}
0.010	1st Place Co	orrect	89.9%	37.9%	83.9%	78.7%	70.2%
	2nd Place Correct (Condit	ional)	96.1%	88.1%	96.1%	95.2%	79.1%
	2nd Place Correct (Uncondit	ional)	86.4%	34.4%	80.7%	74.9%	55.9%
0.005	1st Place Co	orrect	93.6%	34.7%	88.1%	82.7%	64.1%
	2nd Place Correct (Condit	ional)	96.8%	88.3%	96.9%	96.4%	73.1%
	2nd Place Correct (Uncondit	ional)	90.7%	31.4%	85.3%	79.8%	47.2%

ATN Extensions

Inside Information

Since treating classifier as white-box, may be helpful to look at more inside information than just outputs and error derivatives

- Look at hidden unit activations (for practicality, only for penultimate FC layer)
- Increased conditional success of second position

ATN Extensions

Parallel and Serial ATNs

- First, take 1000 random images from MNIST test set, then apply each ATN for each digit separately; track how many ATNs can successfully transform each image
- Next, sequentially apply all 10 ATNs on images
- In parallel application, 283/1000 were transformed successfully; in serial application, 741/1000 were transformed successfully
 - Likely because each transformation diminished underlying original image, so only a few pixels needed to be added to change top class to target
- Order preservation was not maintained in serial application

ImageNet Experiments

Procedure

- Use state-of-the-art Inception ResNet (IR2)
- Trained both AAE and P-ATNs against IR2
- ▶ 5 separate architectures for IR2
 - IR2-Base-Deconv (AAE, P-ATN)
 - IR2-Resize-Conv (AAE)
 - IR2-Conv-Deconv (AAE)
 - IR2-Conv-FC (P-ATN)

The use of FC layer makes AAE too slow, so only P-ATN used FC layer

- All 5 architectures were trained with same hyperparameters for 4 separate targets (binoculars, soccer ball, volcano, zebra) for a total of 20 ATNs
- Hyperparameters found using grid search using only volcano target

ImageNet Experiments

Results

- AAE more successful than P-ATN
- P-ATN tends to preserve most of image at cost of small area with high perturbation, while AAE distributes changes across image
- AAEs, however, can produce checkerboard patterns, a common problem in image generation
- For AAEs, many high frequency patterns are replaced by high frequencies which encode adversarial signal

	P-ATN TARGET CLASS TOP-1 ACCURACY					
	BINOCULARS	SOCCER BALL	VOLCANO	ZEBRA		
IR2-Base-Deconv	66.0%	56.5%	0.2%	43.2%		
IR2-Conv-FC	79.9%	78.8%	0.0%	85.6%		
	AAE ATN	TOP-1 ACCU	JRACY			
	BINOCULARS	SOCCER BALL	VOLCANO	ZEBRA		
IR2-Base-Deconv	83.0%	92.1%	88.1%	88.2%		
IR2-Resize-Conv	69.8%	61.4%	91.1%	80.2%		
IR2-Conv-Deconv	56.6%	75.0%	87.3%	79.1%		

Table 8. IL2 ATN Performance

ImageNet Experiments

Results

- AAE produces more diverse adversarial examples, which may be useful for adversarial training
- P-ATNs sometimes produces the same perturbation in the same place for all input examples (similar to DeepDream)

Summary

- ATNs are a fundamentally different approach then previous gradient descent based approaches for generating adversarial examples
- ATNs are efficient to train, fast to execute, and produces diverse examples; may allow for more robust models in future by improving adversarial training procedures

References

https://arxiv.org/pdf/1703.09387.pdf

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ