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Introduction
Basic Premise and Motivation

I Many standard image models correctly classify randomly
chosen images, but they are usually visually similar to an
incorrectly classified image

I Hypothesize that this behavior is a natural result of the high
dimensional nature of data manifold

I To investigate, study classification between two high
dimensional spheres



Concentric Spheres Dataset

I Data distribution is two concentric spheres in d dimensions
I Generate random x ∈ Rd with ||x ||2 either 1 or R with equal

probability and target y
I If ||x ||2 = 1, y = 0; if ||x ||2 = R, y = 1

I Key advantages of concentric spheres
I Probability density of data p(x) is well defined and uniform

across x ; can sample uniformly by taking z ∼ (~0, I ) and setting
x = z/||z ||2 or x = Rz/||z ||2

I There is a theoretical max margin boundary which perfectly
separates two classes, the sphere with radius (R + 1)/2

I Can create machine learning models which can learn a decision
boundary to separate the two spheres

I Difficulty can be controlled by varying d and R

I R was arbitrarily set to 1.3, model trained online (N =∞)
and with fixed training set size N



Adversarial Examples for Deep ReLU

I Experiment 1: Set d = 500, train a 2 hidden layer ReLU with
1000 hidden units, train with minibatch SGD on sigmoid cross
entropy loss, use Adam optimizer; Online training with batch
size 50 and 1 million training points

I Evaluate on 10 million uniform samples from each sphere: no
errors, so error rate is unknown with only a statistical upper
bound

I Despite lack of error, can find adversarial errors on data
manifold using gradient descent (manifold attack)

I Worst-case example: reiterate attack until convergence (not
around starting point); NN example: Terminate attack on first
misclassfication

I These errors are typically close to randomly sampled points on
sphere; the L2 distance is around 0.18 compared to average
distance between 2 random points, 1.41



Adversarial Examples for Deep ReLU
Visualization

I Visualize decision boundary by taking 2d projections of 500
dimensional space; model naturally interpolates between two
spheres

I Take projections of random, one basis in worst-case
adversarial example, two basis of separate worst-case examples

I This only occurs when spheres are high dimensional; highest
dimension without error is around d = 60



Adversarial Examples for Deep ReLU
Visualization

I Plot accuracy as points approach decision boundary; although
no errors are made far from boundary, adversarial examples
can be found as far as 0.6 and 2.4 norm

I Also show manifold for d = 2; no errors in classification



Adversarial Examples for Deep ReLU
Manifold Attack

I Want to test if adversarial errors are off of the data manifold

I Traditional attacks start with input x and target ŷ and finds
an input x̂ which maximizes P(ŷ , x̂) given the constraint
||x − x̂ || < ε

I Instead, use constraint ||x̂ ||2 = ||x ||2 to ensure that
adversarial example is of same class as starting point

I Solve this constraint problem using PGD, except when
projecting, except on projection step normalize ||x ||2 by
projecting back onto the sphere; this makes it so that
p(x) = p(xadv )



Simple Network Analysis

I Difficult to reason about ReLU decision boundary, so study a
simpler model, ”the quadratic network”

I Single hidden layer where pointwise non-linearity σ(x) = x2;
no bias in hidden layer

I Output sums hidden activations, multiplies by scalar, and adds
bias

I With hidden dimension h, there are dh + 2 trainable
parameters

I Logit is of following form where W1 ∈ Rhxd , ~1 is a column
vector of h 1s, w and b are learned scalars

ŷ(x) = w~1T (W1x)2 + b



Simple Network Analysis

I Through derivations, arrive at alternate form for logit where
αi are scalars which depend on model parameters and ~z is a
rotation of input ~x

ŷ(x) = Σd
i=1αiz

2
i − 1

I Decision boundary is where Σd
i=1αiz

2
i = 1, a d dimensional

ellipsoid
I αi > 1⇒ errors on inner sphere
I αi < 1/R2 ⇒ errors on outer sphere
I Model has perfect accuracy iff all αi ∈ [1/R2, 1]



Simple Network Analysis

I Train quadratic network with h = 1000
I With online training, model has perfect accuracy
I If we have N = 106 points from p(x) as training set, model

has empirically low error rate (no errors from 10 million
randomly sampled tests), but there are adversarial examples:
394 of 500 learned αi are not in range

I Use CLT to estimate error of network from αi to be around
10−11

I Next, augment previous setup with all αi within range and
non-zero gradients

I As model is trained, worst case loss increases, average case
loss decreases

I Reflects how training objective does not directly measure
accuracy and also how high dimensional data may have
divergent losses



Simple Model Analysis
Visualization

I Left: Distribution of αi for N = 106

I Right: Training curves of model with perfect initialization



Simple Model Analysis
CLT Approximation

I Suppose z is chosen from inner sphere, then we want to
compute the probability that Σd

i=1αiz
2
i > 1

I Generate z uniformly on inner sphere by picking ui ∼ N(0, 1)
and let zi = ui/||u||

I Previous equation can be rewritten

1

||u||
Σd
i=1αiu

2
i > 1

Σd
i=1αiu

2
i > Σd

i=1u
2
i

Σd
i=1(αi − 1)u2i > 0



Simple Model Analysis
CLT Approximation

I Let X = Σd
i=1(αi − 1)u2i : if d sufficiently large, can use CLT

to conclude that X ∼ N(µ, σ2)

I Can compute µ since E [u2i ] = σ2ui = 1

µ = E [x ] = Σd
i=1(αi − 1)

I Can compute σ2 too

σ2 = Var [X ] = 2Σd
i=1(αi − 1)2

I Therefore,

P(X > 0) = P(σZ + µ > 0) = P(Z > −µ
σ

) = 1− Φ(−µ
σ

)



Simple Model Analysis
CLT Approximation

I As long as E [αi ] ≈ (1 + R−2)/2 and variance is not too large,
model will be extremely accurate

I Flexibility with choices of αi increases with dimension

I Using approximation, plot fraction of dimension needed to
achieve target error rate (0.5 fraction when d = 2000 implies
1000 hidden nodes); model size to get 0 error may be
siginificantly larger than size to get small error



Local Adversarial Examples
Theorem

I Attempt to explain why local adversarial examples exist for
sphere dataset; do not attempt to relate sphere data to
natural image manifolds

I Define terms:
I S0 is sphere of radius 1 in d dimensions
I E ⊆ S0 is set of all misclassified points by some model
I For x ∈ S0, let d(x ,E ) denote the L2 distance between x and

nearest point in E
I Let d(E ) = Ex∼S0d(x ,E )
I Let µ(E ) denote E as a fraction of S0

I Theorem: Consider any model trained on sphere dataset. Let
p ∈ [0.5, 1.0) be accuracy of model on inner sphere and E be
the set of misclassified points (µ(E ) = 1− p). Then,
d(E ) = O(Φ−1(p)/d).



Local Adversarial Examples
Theorem Implications

I Links probability of error with average error distance
independent of model

I Any model which misclassifies a small constant fraction of the
sphere must have errors close to randomly sampled points

I There exists a optimal tradeoff between generalization
accuracy and average distance to nearest error; train on 2
ReLU and 1 Quadratic model to test



Summary

I Concentric spheres dataset exhibit similar phenomenon to
natural images: most randomly selected points are correctly
classified but are close to a misclassified point

I Explain phenomenon for spheres by proving a theoretical
tradeoff between error rate and average distance to nearest
error of a model; show that variety of architectures match this
bound

I Theorem reduces question from ”why are there adversarial
examples?” to ”why is there a small amount of classification
error?”; unclear whether this would hold for natural images as
well

I Raises question of whether it is possible to solve adversarial
problem given limited data; network size required to create
perfect model may be significantly larger than what is needed
to achieve small classification error
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