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Introduction

Basic Premise and Motivation

» Many standard image models correctly classify randomly
chosen images, but they are usually visually similar to an
incorrectly classified image

» Hypothesize that this behavior is a natural result of the high
dimensional nature of data manifold

» To investigate, study classification between two high
dimensional spheres



Concentric Spheres Dataset

» Data distribution is two concentric spheres in d dimensions
» Generate random x € RY with ||x||2 either 1 or R with equal
probability and target y
» If ||x|2 =1,y =0;if ||x|. =R, y=1
» Key advantages of concentric spheres

» Probability density of data p(x) is well defined and uniform
across x; can sample uniformly by taking z ~ (6, 1) and setting
x = z/||2l2 or x = Rz/||z]]:

» There is a theoretical max margin boundary which perfectly
separates two classes, the sphere with radius (R +1)/2

» Can create machine learning models which can learn a decision
boundary to separate the two spheres

» Difficulty can be controlled by varying d and R

» R was arbitrarily set to 1.3, model trained online (N = o0)
and with fixed training set size N



Adversarial Examples for Deep RelL U

» Experiment 1: Set d = 500, train a 2 hidden layer ReLU with
1000 hidden units, train with minibatch SGD on sigmoid cross
entropy loss, use Adam optimizer; Online training with batch
size 50 and 1 million training points

» Evaluate on 10 million uniform samples from each sphere: no
errors, so error rate is unknown with only a statistical upper
bound

» Despite lack of error, can find adversarial errors on data
manifold using gradient descent (manifold attack)

» Worst-case example: reiterate attack until convergence (not
around starting point); NN example: Terminate attack on first
misclassfication

» These errors are typically close to randomly sampled points on
sphere; the L2 distance is around 0.18 compared to average
distance between 2 random points, 1.41



Adversarial Examples for Deep RelL U

Visualization

» Visualize decision boundary by taking 2d projections of 500
dimensional space; model naturally interpolates between two
spheres

» Take projections of random, one basis in worst-case
adversarial example, two basis of separate worst-case examples

» This only occurs when spheres are high dimensional; highest
dimension without error is around d = 60

random direction

random direction
adversarial direction

] max margin boundary max margin boundary max margin boundary
1 data manifold 1 data manifold 1 data manifold
mm classified as inner sphere mmm ciassified as inner sphere mmm ciassified as inner sphere

random direction adversarial direction adversarial direction



Adversarial Examples for Deep RelL U

Visualization

» Plot accuracy as points approach decision boundary; although
no errors are made far from boundary, adversarial examples
can be found as far as 0.6 and 2.4 norm

» Also show manifold for d = 2; no errors in classification

— Accuracy

— Theoretical Margin 15




Adversarial Examples for Deep RelL U
Manifold Attack

» Want to test if adversarial errors are off of the data manifold

» Traditional attacks start with input x and target y and finds
an input X which maximizes P(y, X) given the constraint
[Ix — X|| < e

» Instead, use constraint ||X||2 = ||x]||2 to ensure that
adversarial example is of same class as starting point

» Solve this constraint problem using PGD, except when
projecting, except on projection step normalize ||x||2 by
projecting back onto the sphere; this makes it so that
p(x) = p(Xaav)



Simple Network Analysis

» Difficult to reason about RelLU decision boundary, so study a
simpler model, "the quadratic network”

> Single hidden layer where pointwise non-linearity o(x) = x?;
no bias in hidden layer

» Qutput sums hidden activations, multiplies by scalar, and adds
bias

» With hidden dimension h, there are dh + 2 trainable
parameters

» Logit is of following form where W; € R™, T is a column
vector of h 1s, w and b are learned scalars

P(x) = wlT(Wix)2 + b



Simple Network Analysis

» Through derivations, arrive at alternate form for logit where
«; are scalars which depend on model parameters and Z is a
rotation of input X

y(x) = Ely0iz ~ 1

» Decision boundary is where 27:104;2[2 =1, a d dimensional
ellipsoid
» «; > 1 = errors on inner sphere
» «; < 1/R? = errors on outer sphere
» Model has perfect accuracy iff all a; € [1/R?,1]



Simple Network Analysis

» Train quadratic network with h = 1000

» With online training, model has perfect accuracy

> If we have N = 10° points from p(x) as training set, model
has empirically low error rate (no errors from 10 million
randomly sampled tests), but there are adversarial examples:
394 of 500 learned «; are not in range

» Use CLT to estimate error of network from «; to be around
10711

» Next, augment previous setup with all «; within range and
non-zero gradients

» As model is trained, worst case loss increases, average case
loss decreases
> Reflects how training objective does not directly measure

accuracy and also how high dimensional data may have
divergent losses



Simple Model Analysis

Visualization

» Left: Distribution of «; for N = 10°

» Right: Training curves of model with perfect initialization
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Simple Model Analysis

CLT Approximation

» Suppose z is chosen from inner sphere, then we want to
compute the probability that Zf’:la;z,? >1

» Generate z uniformly on inner sphere by picking u; ~ N(0,1)
and let z; = u;/||ul|

» Previous equation can be rewritten
1

HuHZf]:loz,-u,-2 >1

d 2 yd 2
Ligaiup > X uj

¥ (ai—1)u? >0



Simple Model Analysis

CLT Approximation

v

Let X = £¢  (a; — 1)u?: if d sufficiently large, can use CLT
to conclude that X ~ N(u,0?)

Can compute y since E[u?] =02 =1

v

i= Elx] = £y (a; — 1)
» Can compute o too

02 = Var[X] =259 (o — 1)?

v

Therefore,

P(x>0):P(az+u>0):P(z>—§):1—¢(—§)



Simple Model Analysis

CLT Approximation

» As long as E[a;] ~ (1 + R72)/2 and variance is not too large,
model will be extremely accurate

> Flexibility with choices of «; increases with dimension

» Using approximation, plot fraction of dimension needed to
achieve target error rate (0.5 fraction when d = 2000 implies
1000 hidden nodes); model size to get 0 error may be
siginificantly larger than size to get small error

Fraction of Dimensions

Input Dimension



Local Adversarial Examples

Theorem

» Attempt to explain why local adversarial examples exist for
sphere dataset; do not attempt to relate sphere data to
natural image manifolds

> Define terms:

» Sy is sphere of radius 1 in d dimensions

» E C S is set of all misclassified points by some model

» For x € Sy, let d(x, E) denote the L2 distance between x and
nearest point in E

» Let d(E) = Exs,d(x, E)

» Let p(E) denote E as a fraction of Sp

» Theorem: Consider any model trained on sphere dataset. Let
p € [0.5,1.0) be accuracy of model on inner sphere and E be
the set of misclassified points (11(E) =1 — p). Then,

d(E) = O(~(p)/d).



Local Adversarial Examples

Theorem Implications

» Links probability of error with average error distance
independent of model

» Any model which misclassifies a small constant fraction of the
sphere must have errors close to randomly sampled points

» There exists a optimal tradeoff between generalization
accuracy and average distance to nearest error; train on 2
ReLU and 1 Quadratic model to test
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Summary

» Concentric spheres dataset exhibit similar phenomenon to
natural images: most randomly selected points are correctly
classified but are close to a misclassified point

» Explain phenomenon for spheres by proving a theoretical
tradeoff between error rate and average distance to nearest
error of a model; show that variety of architectures match this
bound

» Theorem reduces question from "why are there adversarial
examples?” to "why is there a small amount of classification
error?”; unclear whether this would hold for natural images as
well

» Raises question of whether it is possible to solve adversarial
problem given limited data; network size required to create
perfect model may be significantly larger than what is needed
to achieve small classification error
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