
Generating Sentences by Editing Prototypes

K. Guu2, T.B. Hashimoto1,2, Y. Oren1, P. Liang1,2

1Department of Computer Science
Stanford University

2Department of Statistics
Stanford University

arXiv preprint arXiv:1709.08878, 2017.

Reviewed by : Bill Zhang
University of Virginia

https://qdata.github.io/deep2Read/

https://qdata.github.io/deep2Read/

Outline

Introduction

Problem Statement

Approach

Experiments

Summary

Introduction
Basic Premise and Motivation

I Current state-of-the-art sentence generators generate from
scratch

I Tend to favor generic, short statements
I More complex sentences sacrifice grammar

I Prototype-then-edit model inspired by drafting for papers

I Start from a high quality sentence with no bias towards short
or grammatically incorrect statements and edit with an ”edit
vector”

I Compare performance with generate from scratch models
through two metrics: language generation quality and
semantic properties

Problem Statement
Primary Goals

I Learn a generative model of sentences
I Select a prototype sentence, x ′, from a training set of

sentences, X
I Select an edit vector, z , from a distribution of edit vectors,

p(z)
I Select final sentence from distribution of sentences resulting

from applying z to x ′ (pedit(x |x ′, z))

I Likelihood of a sentence
I p(x) = Σx′∈Xp(x |x ′)p(x ′)
I p(x |x ′) =

∫
z
pedit(x |x ′, z)p(z)dz

I Process chosen because sentences in a large data set tend to
be minor transformations of other sentences

Problem Statement
Secondary Goals

I Capture semantic properties
I Each edit should only slightly change semantics of sentence,

more edits should accumulate change
I Applying the same edit vector to different sentences should

yield similar semantic changes

Approach
Approximations

I Previous equations expensive to calculate and maximize
I p(x) = Σx ′∈Xp(x |x ′)p(x ′)

I Only sum across x ′ lexically similar to x , as measured by
Jaccard Distance, dJ

I N(x) = {x ′ ∈ X |dJ(x , x ′) < 0.5}
I p(x |x ′) =

∫
z pedit(x |x

′, z)p(z)dz
I Generate lower bound by modeling z with a variational

autoencoder, which admits tractable inference via the Evidence
Lower Bound (ELBO)

I Jensen’s Inequality used in approximations

Approach
Approximation Derivations

log p(x) ≥ log (Σx ′∈N(x)p(x ′)p(x |x ′))

≥ log (Σx ′∈N(x)|N(x)|−1p(x |x ′))− log |X |
≥ |N(x)|−1Σx ′∈N(x) log p(x |x ′)− log |X |

p(x ′) =
1

|X |
⇒ Σx ′∈N(x)p(x ′)p(x |x ′) =

Σx ′∈N(x)p(x |x ′)
|X |

⇒ p(x) ≥
Σx ′∈N(x)|N(x)|−1p(x |x ′)

|X |

Therefore, treating |N(x)| as a constant and summing over all
x ∈ X , we get the objective function:

LLex = Σx∈XΣx ′∈N(x) log p(x |x ′)

Approach
Approximation Derivations

p(x |x ′) =

∫
z
pedit(x |x ′, z)p(z)dz

log p(x |x ′) = log

∫
z
pedit(x |x ′, z)p(z)dz

= log

∫
z

pedit(x |x ′, z)p(z)

q(z |x , x ′)
q(z |x , x ′)dz

= log Eq[
pedit(x |x ′, z)p(z)

q(z |x , x ′)
]

≥ Eq[log pedit(x |x ′, z)] + Eq[log p(z)]− Eq[log q(z |x , x ′)]

Approach
Approximation Derivations

DKL(q(z |x , x ′)||p(z)) = Eq[log
q(z |x , x ′)

p(z)
]

= Eq[log q(z |x , x ′)]− Eq[log p(z)]

log p(x |x ′) ≥ l(x , x ′) = Eq[log pedit(x |x ′, z)]−DKL(q(z |x , x ′)||p(z))
Therefore, the final objective function is:

LLex ≥ LELBO = Σx∈XΣx ′∈N(x)l(x , x
′)

Approach
Approximation Definitions

I Neural Editor: pedit(x |x ′, z)
I Seq-to-seq model with attention, concatenate z to decoder

input

I Edit prior: p(z)
I znorm ∼ Unif(0, 10)
I zdir ∼ vMF(0)

I Approximate Edit Posterior: q(z |x , x ′)
I Want edit vector to represent word insertions and deletions
I Let I = x\x ′ be word insertions, D = x ′\x be word deletions
I f (x , x ′) = Σw∈Iφ(w)⊕ Σw∈Dφ(w), but need to add entropy

I Add uniform noise to f̃norm, which has been truncated to 10
I Add vMF noise to fdir

Experiments
Datasets

I Yelp review corpus

I One Billion Word Language Model Benchmark

I Replaced named entities and replaced rare tokens from data
sets with special token

Experiments
Approaches Compared

I Neural Editor (Proposed)

I NLM (Standard generation from scratch)

I KN5 (5-gram language model)

I Memorization

I SVAE (Sentence variational autoencoder)

Experiments
Results: Perplexity

I Proximity to prototype is chief determinant of perplexity
performance

I Majority of sentences in Yelp testing set (70%) have similar
structure to a training set sentence

Experiments
Results: Human Evaluation

I NeuralEditor is on par with best tuned NLM in terms
grammaticality and plausibility, while also having larger
diversity

I Initial prototypes already inject sentence diversity without
having to increase the temperature of the model substantially
and thus preserve grammaticality and plausibility

I High temperature NLMs have more diversity, but less
grammaticality and plausibility; low temperature NLMs have
the opposite problem

I Higher temperature NeuralEdit results in more deviation from
training set

Experiments
Results: Semantics

I Semantic smoothness
I NeuralEditor: Randomly select prototype sentence and

repeatedly apply edits drawn from edit distribution to produce
sequence

I SVAE: Randomly select prototype sentence and repeatedly
encode and decode again after adding random Gaussian with
variance 0.4 to produce sequence

I NeuralEditor frequently paraphrases while SVAE often repeats
sentences exactly or generates unrelated sentences

I Smoothly controlling sentences
I Generate more sequences like before and select sequence for

each method which has greatest likelihood to match desired
attributes

I NeuralEditor tends to have less tradeoff of semantic similarity
for attribute satisfaction

Experiments
Results: Semantics

I Consistent edit behavior
I Take sentences x1 and x2 with some semantic relation r ; given

y1, find y2 such that y1 and y2 also have relation r
I Approximate edit vector from x1 to x2 as ẑ = f (x1, x2)
I Apply ẑ to y1 and evaluate top k candidates of resulting

distribution to see if any match y2
I Sentence analogies are generated from single replacement from

existing word analogies
I SVAE had close to 0 accuracy, so instead compared to baseline

of randomly sampling ẑ
I Performance on par with models for word-level analogies

Summary

I The prototype-then-edit model allows for grammaticality and
plausibility without the cost of sentence structure diversity

I Compared to other language models, the prototype-then-edit
model is much better at preserving semantics and maintaining
semantic smoothness and is on par with current
state-of-the-art in perplexity

I The prototype-then-edit model typically only allows for small
deviations from training set, which means it performs poorly if
training set is too different from testing set

References

I https://arxiv.org/pdf/1709.08878.pdf

I https://www.cs.cmu.edu/~epxing/Class/10708-15/

notes/10708_scribe_lecture13.pdf

I http:

//mathworld.wolfram.com/JensensInequality.html

https://arxiv.org/pdf/1709.08878.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-15/notes/10708_scribe_lecture13.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-15/notes/10708_scribe_lecture13.pdf
http://mathworld.wolfram.com/JensensInequality.html
http://mathworld.wolfram.com/JensensInequality.html

	Introduction
	Problem Statement
	Approach
	Experiments
	Summary

