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Introduction

@ Variational inference (VI) is a framework for approximating an
intractable distribution by optimizing over a family of tractable
surrogates

o Traditional VI algorithms iterate over the observed data and update
the variational parameters with closed-form coordinate ascent updates
that exploit conditional conjugacy

@ This style of optimization is challenging to extend to large datasets
and non-conjugate models
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Stochastic and Amortized Variational inference

@ the variational parameters for each data point are randomly initialized
and then optimized to maximize the evidence lower bound (ELBO)
with, for example, gradient ascent

@ These updates are based on a subset of the data, making it possible
to scale the approach.

@ amortized variational inference, the local variational parameters are
instead predicted by an inference (or recognition) network

@ which is shared (i.e. amortized) across the dataset.

@ VAEs utilize AVI for inference and jointly train the generative model
alongside the inference network.
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@ (+) SVI gives good local (i.e. instance-specific) distributions within
the variational family

@ (-) but requires performing optimization for each data point
@ AVI has fast inference,

@ (-) but having the variational parameters be a parametric function of
the input may be too strict of a restriction

@ (-) hence,its parameters may be updated based on suboptimal
variational parameters

@ amortization gap (the gap between the log-likelihood and the ELBO
due to amortization) can be significant for VAEs, especially on
complex datasets
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Background: Notation

@ f: R™ — R scalar valued function
@ partitioned inputs: [u1, ..., Un]

e Y™ dim(uj) =n
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Background:Variational Inference

° z~p(2)

@ X~ p(X‘Z, 9)

o ELBO(A,0,x): logp(x; 0) > Eq(zx)llogp(x|2)] — KL[q(z; A)||p(2)]

@ given a dataset xi,...,xy and need to find variational parameters
A1, ..., An and generative model parameters that jointly maximize
ELBO
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Sample x ~ pp(x)

Randomly initialize A\g
Fork=0,...,K—1
Ak + 1= X + AV jambda ELBO(A; 6; x)
4. Update 0 based on VyELBO(Ag; 6; x)

because of this block coordinate ascent approach the variational
parameters, \ are optimized separately from 6, potentially making it
difficult for 6 to adapt to local optima.
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e Sample x ~ pp(x)
@ 2. Set \g = enc(x; ¢)

e 3. Update 0 based on VyELBO(\k; 8; x) (which in this case is equal
to the total derivative)

d(ELBO(X,0,x))  dA

do - do

@ The inference network is learned jointly alongside the generative

model with the same loss function, allowing the pair to coadapt.

@ 4. Update ¢ based on —V4ELBO(\, 6, x)

@ requiring the variational parameters to be a parametric function of the input may be too strict of a restriction and can
lead to an amortization gap. This gap can propagate forward to hinder the learning of the generative model if 6 is
updated based on suboptimal A. While we describe the various algorithms for a specific data point, in practice we use

mini-batches.
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Semi-Amortized Variational Autoencoders

@ utilize an inference network over the input to give the initial
variational parameters

subsequently run SVI to refine them.

Sample x ~ pp(x)

2. Set Ao = enc(x; ¢)

3. Fork=0,...,K—1, set >\k+1 =X + OtV/ambdaELBO()\k; 0, X)
d(ELBO(\g; 0; x))

@ 4. Update # based on 0)
o 5. Update ¢ based on d(ELB(CD/E;?;G;X))
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SVAE Algorithm

Algorithm 1 Semi-Amortized Variational Autoencoders

Input: inference network ¢, generative model 6,
inference steps K, learning rate v, momentum -,
loss function f(A, 8,x) = — ELBO(A, 0, x)
Sample x ~ pp(x)
Ao 4+ enc(x; ¢)
vy < 0
fork=0to K —1do
Uka1 — Y0 — Vaf( Ak, 0.%x)
Apt1 = Ak + Qv
end for
L+ f(Ak.0,%x)
A = Vaf(Ag.0.x)
0+ Vof( Mk, 0,%)
T 0
fork =K —1to0do
Upt1 < U1 + 0
A 4= Mg — Han S (Mg, 0, x) 041
0« 60— Hg’,\f(/\k-, 4, X)WkJrl
Vg = YUk41
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MODEL NLL KL PPL
LSTM-LM 334.9 - 66.2
LSTM-VAE <3421 00 <725
LSTM-VAE + INIT <3392 00 <69.9
CNN-LM 335.4 - 66.6
CNN-VAE <3339 67 <654
CNN-VAE + INIT <3321 100 <639
LM 320.1 - 61.6
VAE <3302 001 <625
VAE + INIT <3305 037 <627
VAE + WORD-DROP 25% <3342 144 <65.6
VAE + WORD-DROP 50% < 345.0 529 <752
SVI (K = 10) <3314 016 <634
SVI (K = 20) <3308 041 <629
SVI (K = 40) <3208 101 <622
VAE + SVI (K = 10) <3312 7.85 <633
VAE + SVI (K = 20) <3305 7.80 <627
VAE + SVI+KL (K = 10) <3303 7.95 <625
VAE + SVI+KL (K =20) <3301 7.81 <623
SA-VAE (K = 10) <3276 513 <605
SA-VAE (K = 20) <3275 719 <604

Table 2. Results on text modeling on the Yahoo dataset. Top results
are from Yang et al. (2017), while the bottom results are from this
work (+ INIT means the encoder is initialized with a pretrained lan-
guage model, while models with + WORD-DROP are trained with
word-dropout). NLL/KL numbers are averaged across examples,
and PPL refers to perplexity. K refers to the number of inference

steps used for training/testing.
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MODEL NLL

IWAE (Burda et al., 2015a) 103.38
LADDER VAE (Sgnderby et al., 2016) 102.11
RBM (Burda et al., 2015b) 100.46
DISCRETE VAE (Rolfe, 2017) 07.43
DRAW (Gregor et al., 2015) < 96.50
CONV DRAW (Gregor et al., 2016) <91.00
VLAE (Chen et al., 2017) 89.83
VAMPPRIOR (Tomczak & Welling, 2018) 89.76
GATED PIXELCNN 90.59
VAE < 90.43 (0.98)
SVI (K = 10) < 90.65 (0.02)
SVI (K = 20) < 90.51 (0.06)
SVI (K = 40) < 90.44 (0.27)
SVI (K = 80) <90.27 (1.65)
VAE + SVI (K = 10) < 90.26 (1.69)
VAE + SVI (K = 20) < 90.19 (2.40)
VAE + SVI + KL (K = 10) <90.24 (2.42)
VAE + SVI + KL (K = 20) <90.21 (2.83)
SA-VAE (K = 10) <90.20 (1.83)
SA-VAE (K = 20) < 90.05 (2.78)

Table 3. Results on image modeling on the OMNIGLOT dataset.
Top results are from prior works, while the bottom results are from
this work. GATED PIXELCNN is our autoregressive baseline, and
K refers to the number of inference steps during training/testing.
For the variational models the KL portion of the ELBO is shown
in parentheses.
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Figure 3. (Top) Saliency visualization of some examples from the test set. Here the saliency values are rescaled to be between 0-100
within each example for easier visualization. Red indicates higher saliency values. (Middle) Tnput saliency of the first test example from
the top (in blue), in addition (o two sample outputs generated from the variational posterior (with their saliency values in red). (Bottom)
Same as the middle except we use a made-up example. Best viewed in color.
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