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Optimizing Stochastic Computation Graphs

VoL(0,0) = VoBxrop, ) fo(X)] = Extopy ([ Vo (X)

Figure: Objective

VoL(0,6) ~ SZ Vo fo(X?),

Figure: wrt 6

Vot,6)= Ve [n(0tahds = [ 6T

Figure: wrt phi
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Related: Score function estimators

V4 L{B,0) = Exup, (o) [fo(X)Vs logpe(X)].

Estimating this expectation using naive Monte Carlo gives the estimator

V¢L 9 (b ~ —Z f@ ng¢(Xs)

Figure: REINFORCE
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Related: Reparametrization

L(ﬁ, ¢) = EXdi,(:c) [f@(X)] = Equ(z)[f9(g¢(Z))]' (6)

As g(z) does not depend on ¢, we can estimate the gradient w.r.t. ¢ in exactly the same way we
estimated the gradient w.t. 6 in Eq. 1. Assuming differentiability of fy(z) wrt. 2 and of g,(2)
w.r.t. ¢ and using the chain rule gives

VoL{6,0) = EgnqioVoflgol )] = Bangte) fo(96(2)) Vogo 2] )

Figure: REPARAMETRIZATION
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Gumbel-Softmax : Reparametrization + continuous

z = one_hot (arg max [g; + log ﬂ'z])

7
Figure: REPARAMETRIZATION

where

yie :XP(UOg(M) +4i)/7) fori1,..k
Yin1 exp((log(m;) + g;)/7)

The density of the Gumbel-Softmax distribution (derived in Appendix B) is:

-k
pﬂ',’r(yla ayk (Z "Ti/yz ) H m/yT-l-l)
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Visualization
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Figure 1: The Gumbel-Softmax distribution interpolates between discrete one-hot-encoded categor-
ical distributions and continuous categorical densities. (a) For low temperatures (7 = 0.1,7 = 0.5),
the expected value of a Gumbel-Softmax random variable approaches the expected value of a cate-
gorical random variable with the same logits. As the temperature increases (7 = 1.0, 7 = 10.0), the
expected value converges to a uniform distribution over the categories. (b) Samples from Gumbel-
Softmax distributions are identical to samples from a categorical distribution as 7 — 0. At higher
temperatures, Gumbel-Softmax samples are no longer one-hot, and become uniform as 7 — oco.
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