Review Series of Recent Deep Learning Papers:
Parameter Prediction Paper: METRIC LEARNING WITH ADAPTIVE DENSITY DISCRIMINATION

Reviewed by: Arshdeep Sekhon

1Department of Computer Science, University of Virginia
https://qdata.github.io/deep2Read/
Good Representations and Classification

- Classification algorithms often serve as convenient feature extractors.
- Training a network for classification on a large dataset, and retaining the outputs of the last layer as feature inputs for other tasks.
- But, classification maps each to a single, scalar prediction: dispose of all information but class label.
Motivation

- Be able to construct a representation which is amenable to classification, while still maintaining more fine-grained information.
- Use Distance Metric Learning Approaches (DML).
DML learns a transformation to a representation space where distance is in correspondence with a notion of similarity.
Issues with Previous Metric Learning approaches

In Brief:

- Semantic Similarity based on class:
 - destroys intra-class variation and inter class similarity
- To deal with the previous issue, Local Similarity—each example similar to only a few neighbors
 - issue: neighbors fixed a priori in input space: contradiction!
- Triplet loss
 - short sighted: penalizing individual pairs or triplets of examples
Magnet Loss: Key idea

- use a neighborhood, instead of only triplets
- similarity defined in representation space
- New loss that penalises overlap of clusters, and reduces intracluster distances
Magnet Loss: Key idea

Figure: an entire local neighbourhood of nearest clusters is retrieved, and their overlaps are penalized
Magnet Loss: Formulation

- parametrized map: \(f(\dot{\theta}; \Theta) \)
- representation: \(r_n = f(x_n, \Theta) \)
- Assignment of clusters: to reduce intra cluster distance

\(r \) is representation in new space

\[
I_{c_1, \ldots, c_K} = \arg\min_{I_{c_1}, \ldots, I_{c_K}} \sum_{k=1}^{K} \sum_{r \in I_{c_k}} \|r - \mu_{c_k}^c\|_2^2 ,
\]

\[
\mu_{c_k}^c = \frac{1}{|I_{c_k}|} \sum_{r \in I_{c_k}} r .
\]

Figure: assignment of clusters

Reviewed by: Arshdeep Sekhon (University of Virginia)
Review Series of Recent Deep Learning Papers
Magnet Loss: Formulation

- $C(r)$ is class of r
- $\mu(r)$ is cluster assignment

$$\mathcal{L}(\Theta) = \frac{1}{N} \sum_{n=1}^{N} \left\{ -\log \frac{e^{-\frac{1}{2\sigma^2} \| r_n - \mu(r_n) \|_2^2 - \alpha}}{\sum_{c \neq C(r_n)} \sum_{k=1}^{K} e^{-\frac{1}{2\sigma^2} \| r_n - \mu_k^c \|_2^2}} \right\} +$$

Figure: Loss
Experiments

- Stanford Dogs: Fine Grained Classification
- Object Attributes Dataset: 25 attribute annotations for 90 classes of an updated version of ImageNet, with about 25 annotated examples per class.