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Locking in Neural Networks

To update Layer 1:

1 Forward Propagation through Layer 2 and Layer 3

2 Backward Propagation through Layer 2 and Layer 3
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Why is locking a problem?

1 Updates in sequential and synchronous manner

2 A distributed system: Updates depend on the slowest part

3 parallelizing training of neural network modules can speed up training.
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Decoupled Neural interface

1 Layer 1 will be updated before Layer 2 and Layer 3 have even been
executed.

2 No longer locked to the rest of the network.
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A Decoupled Neural Interface

1 Decoupled Neural Interfaces predict gradients : synthetic gradients
from previous layer outputs or activations

2 do not rely on backpropagation to get error gradients
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Gradients for FeedForward Networks

1 A network with N layers fi ,i ε{1, · · · ,N}
2 For the ith layer, input hi−1, output hi = fi (hi−1)
3 The complete graph is represented by FN

1
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Gradients for FeedForward Networks

1

θi ← θi − αδi
δhi
δθi

; δi =
δL

δhi
(1)
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Synthetic Gradients for FeedForward Networks

θn ← θn − αδ̂i
δhi
δθn

; δi = Mi+1(hi ) (2)
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Synthetic Gradients for FeedForward Networks

1

θn ← θn − αδ̂i
δhi
δθn

; δi = Mi+1(hi ) (3)

2 n ε{1, · · · , n}
3 To train Mi+1(hi ),

4 wait for true error gradient to be computed

5 after a full forwards and backwards pass of FN
i+1

6 Minimize ||δ̂i − δi ||22
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Every Layer DNI for FeedForward Networks

use backpropagated ˆδi+1 instead of the true gradients
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Synthetic Gradients for RNNs

The task: stream prediction; possibly infinite

Unrolling the recurrent network:

Forward Graph: Finf
1 made up of fi where i varies from 1 to inf

At a particular point in time t, minimise Loss over the next steps

inf∑
τ=t

Lτ (4)

θ ← θ − α
inf∑
τ=t

δLτ
δθ

(5)
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Synthetic Gradients for RNNs

Truncated Backpropagation

At a particular point in time t, minimise Loss over the next steps

θ ← θ − α
( T∑

τ=t

δLτ
δθ

+
( inf∑

τ=T+1

δLτ
δhT

)δhT
δθ

)
(6)

θ ← θ − α
( T∑

τ=t

δLτ
δθ

+
(
δT

)δhT
δθ

)
(7)

truncated BPTT: δT = 0; limits temporal dependency learnt by rnn
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Synthetic Gradients for RNNs

Truncated Backpropagation

θ ← θ − α
( T∑

τ=t

δLτ
δθ

+
(
δ̂T

)δhT
δθ

)
(8)

δ̂T = MT (hT ); learned approximation of the future loss gradients

divide unrolled rnn into subnetworks of length T

insert a DNI between Ft+T−1
t and Ft+2T−1

t+T
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Synthetic Gradients for RNNs

Truncated Backpropagation

θ ← θ − α
( T∑

τ=t

δLτ
δθ

+
(
δ̂T

)δhT
δθ

)
(9)

train MT by minimizing d(δT , δ̂T )

true δT not available: Bootstrapping

δT =
∑2T

τ=T+1

δLτ
δhT

+ δ̂2T+1
h2T
hT
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Other applications

1 Add an auxiliary task

2 Combine with true backpropagation gradients

3 Arbitrary Network Graphs
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Results: Penn Tree Bank Language Modeling
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Results: Copy Repeat Copy Task

1 Copy: Copy a sentence of length N

2 Repeat Copy: copy a sentence of length N R times

3 Max sequence length successfully modeled increases with DNI for the
same T in BPTT
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