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Locking in Neural Networks
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To update Layer 1:
© Forward Propagation through Layer 2 and Layer 3

@ Backward Propagation through Layer 2 and Layer 3
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y is locking a problem
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© Updates in sequential and synchronous manner
@ A distributed system: Updates depend on the slowest part
© parallelizing training of neural network modules can speed up training
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Decoupled Neural interface
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@ Layer 1 will be updated before Layer 2 and Layer 3 have even been

executed.
@ No longer locked to the rest of the network.
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A Decoupled Neural Interface

Synthetic Gradient

Predicted gradient of the loss with
respect to the input activations

Activations

© Decoupled Neural Interfaces predict gradients : synthetic gradients
from previous layer outputs or activations

@ do not rely on backpropagation to get error gradients
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Gradients for FeedForward Networks
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@ A network with N layers f;,i e{1,--- , N}
@ For the iy, layer, input h;_1, output h; = fi(hj_1)
© The complete graph is represented by IF{V
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Gradients for FeedForward Networks
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Synthetic Gradients for FeedForward Networks

0,0, — agiﬁ; 0i = Mit1(hj) (2)
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Synthetic Gradients for FeedForward Networks
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0, « 6, — aé,-(s—an; 0i = Miy1(h;) (3)

Qn 6{17"' 7n}
© To train Mi+1(hi),
@ wait for true error gradient to be computed

@ after a full forwards and backwards pass of ]Ff\’+1

@ Minimize ||6; — &;|3
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Every Layer DNI for FeedForward Networks

use backpropagated 5,-;1 instead of the true gradients
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Synthetic Gradients for RNNs

The task: stream prediction; possibly infinite

Unrolling the recurrent network:
Forward Graph: IFil"f made up of f; where i varies from 1 to inf
At a particular point in time t, minimise Loss over the next steps

inf

> L, (4)

inf SL
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T=t
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Synthetic Gradients for RNNs

Truncated Backpropagation

At a particular point in time t, minimise Loss over the next steps

veo-a(Y 0 (3 00 e
T= T=T+1
e o-a( S+ (or) 2) 4

truncated BPTT: §+ = 0; limits temporal dependency learnt by rnn
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Synthetic Gradients for RNNs

Truncated Backpropagation
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or = M+t (ht); learned approximation of the future loss gradients
divide unrolled rnn into subnetworks of length T

insert a DNI between Fi*7 ' and Fif37 !
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Synthetic Gradients for RNNs

Truncated Backpropagation

Synthetic Synthetic
gradient gradient

er-a( L+ (7)) ©

train Mt by minimizing d(5T,5T)

true d1 not available: Bootstrapping

oL, & h
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Other applications

@ Add an auxiliary task
@ Combine with true backpropagation gradients
© Arbitrary Network Graphs
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Results: Penn Tree Bank Language Modeling
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Results: Copy Repeat Copy Task

© Copy: Copy a sentence of length N
@ Repeat Copy: copy a sentence of length N R times

BPTT DNI
2 5 8 20 40| 2 3 4 5 8
7 8 - - - 16 14 18 18 -
Repeat Copy 7 23 - - - 139 33 39 39 -

© Max sequence length successfully modeled increases with DNI for the
same T in BPTT
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