Review Series of Recent Deep Learning Papers: Parameter Prediction Paper: Decoupled Neural Interfaces Using Synthetic Gradients

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver Koray Kavukcuoglu

Reviewed by : Arshdeep Sekhon

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

August 25, 2018

Reviewed by : Arshdeep Sekhon (University *Review Series of Recent Deep Learning Paper*

Locking in Neural Networks

To update Layer 1:

- Forward Propagation through Layer 2 and Layer 3
- Backward Propagation through Layer 2 and Layer 3

Why is locking a problem?

- Updates in sequential and synchronous manner
- A distributed system: Updates depend on the slowest part
- I parallelizing training of neural network modules can speed up training.

Decoupled Neural interface

- Layer 1 will be updated before Layer 2 and Layer 3 have even been executed.
- O No longer locked to the rest of the network.

- Decoupled Neural Interfaces predict gradients : synthetic gradients from previous layer outputs or activations
- ② do not rely on backpropagation to get error gradients

Gradients for FeedForward Networks

- **1** A network with N layers f_i , i $\epsilon \{1, \dots, N\}$
- **2** For the i_{th} layer, input h_{i-1} , output $h_i = f_i(h_{i-1})$
- The complete graph is represented by \mathbb{F}_1^N

Reviewed by : Arshdeep Sekhon (University *Review Series of Recent Deep Learning Paper*

Gradients for FeedForward Networks

$$\theta_{i} \leftarrow \theta_{i} - \alpha \delta_{i} \frac{\delta h_{i}}{\delta \theta_{i}}; \ \delta_{i} = \frac{\delta L}{\delta h_{i}} \tag{1}$$

Reviewed by : Arshdeep Sekhon (University *Review Series of Recent Deep Learning Paper*

August 25, 2018 7 / 17

Synthetic Gradients for FeedForward Networks

$$\theta_n \leftarrow \theta_n - \alpha \hat{\delta}_i \frac{\delta h_i}{\delta \theta_n}; \ \delta_i = M_{i+1}(h_i)$$
(2)

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

$$\theta_n \leftarrow \theta_n - \alpha \hat{\delta}_i \frac{\delta h_i}{\delta \theta_n}; \ \delta_i = M_{i+1}(h_i)$$
(3)

2 n
$$\epsilon \{1, \cdots, n\}$$

• To train
$$M_{i+1}(h_i)$$
,

- wait for true error gradient to be computed
- **(**) after a full forwards and backwards pass of \mathbb{F}_{i+1}^N

• Minimize
$$||\hat{\delta}_i - \delta_i||_2^2$$

Every Layer DNI for FeedForward Networks

use backpropagated $\hat{\delta_{i+1}}$ instead of the true gradients

August 25, 2018 10 / 17

Unrolling the recurrent network:

Forward Graph: \mathbb{F}_1^{inf} made up of f_i where i varies from 1 to inf At a particular point in time t, minimise Loss over the next steps

:....£

$$\sum_{\tau=t}^{\text{IIII}} L_{\tau}$$

$$\leftarrow \theta - \alpha \sum_{\tau=t}^{\inf} \frac{\delta L_{\tau}}{\delta \theta}$$
(5)

θ

Truncated Backpropagation

At a particular point in time t, minimise Loss over the next steps

$$\theta \leftarrow \theta - \alpha \Big(\sum_{\tau=t}^{T} \frac{\delta L_{\tau}}{\delta \theta} + \Big(\sum_{\tau=T+1}^{\inf} \frac{\delta L_{\tau}}{\delta h_{T}} \Big) \frac{\delta h_{T}}{\delta \theta} \Big)$$
(6)

$$\theta \leftarrow \theta - \alpha \Big(\sum_{\tau=t}^{T} \frac{\delta L_{\tau}}{\delta \theta} + \Big(\delta_{T} \Big) \frac{\delta h_{T}}{\delta \theta} \Big)$$
(7)

truncated BPTT: $\delta_T = 0$; limits temporal dependency learnt by rnn

Truncated Backpropagation

$$\theta \leftarrow \theta - \alpha \Big(\sum_{\tau=t}^{T} \frac{\delta L_{\tau}}{\delta \theta} + \Big(\hat{\delta_{\tau}} \Big) \frac{\delta h_{T}}{\delta \theta} \Big)$$
(8)

 $\hat{\delta_T} = M_T(h_T)$; learned approximation of the future loss gradients divide unrolled rnn into subnetworks of length T insert a DNI between \mathbb{F}_t^{t+T-1} and $\mathbb{F}_{t+T}^{t+2T-1}$

Truncated Backpropagation

$$\theta \leftarrow \theta - \alpha \Big(\sum_{\tau=t}^{T} \frac{\delta L_{\tau}}{\delta \theta} + \Big(\hat{\delta_{\tau}} \Big) \frac{\delta h_{T}}{\delta \theta} \Big)$$
(9)

train M_T by minimizing $d(\delta_T, \hat{\delta_T})$ true δ_T not available: Bootstrapping

$$\delta_T = \sum_{\tau=T+1}^{2T} \frac{\delta L_{\tau}}{\delta h_T} + \hat{\delta}_{2T+1} \frac{h_{2T}}{h_T}$$

- Add an auxiliary task
- Ombine with true backpropagation gradients
- Arbitrary Network Graphs

Results: Penn Tree Bank Language Modeling

- Copy: Copy a sentence of length N
- **2 Repeat Copy**: copy a sentence of length N R times

	BPTT							DNI				
T =	2	3	4	5	8	20	40	2	3	4	5	8
Copy	7	8	10	8	-	-	-	16	14	18	18	-
Repeat Copy	7	5	19	23	-	-	-	39	33	39	59	-

Max sequence length successfully modeled increases with DNI for the same T in BPTT