Review Series of Recent Deep Learning Papers:

Parameter Prediction Paper: Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

Hyeonwoo Noh, Paul Hongsuck, Seo Bohyung Han CVPR 2016

Reviewed by: Arshdeep Sekhon

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

August 25 2010 (□) (□) (□) (□) (□)

Image QA

- Task: Image Question Answering
- Previous Methods: tasks were of the same type: one of some category of objects, etc.
- less efforts on solving various recognition problems simultaneously, which is more complex and realistic

Q: What type of animal is this? Q: Is this animal alone?

Q: Is it snowing? Q: Is this picture taken during the day?

O: What kind of oranges are these?

O: What is leaning on the wall?

Motivation

Task defined by the question in Image QA

Motivation

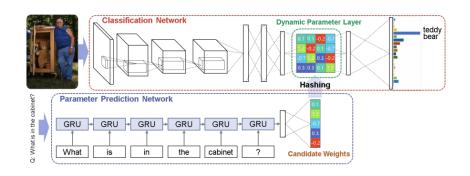
- Task defined by the question in Image QA
- Solve the heterogeneous recognition tasks using a single CNN by adapting the weights in the dynamic parameter layer

Motivation

- 1 Task defined by the question in Image QA
- solve the heterogeneous recognition tasks using a single CNN by adapting the weights in the dynamic parameter layer
- the weights in the dynamic layer are determined by the question
- A hashing trick to reduce number of parameters

The Model

Conventional Approach:


$$\hat{a} =_{a \in \Omega} p(a|q, I; \theta) \tag{1}$$

2 Dynamic Parameter Prediction:

$$\hat{a} =_{a \in \Omega} p(a|I; \theta_s, \theta_d(q)) \tag{2}$$

The Model

VGG-Net pretrained on Image Net second last layer is dynamically predicted.

The Model

- 1 The parameter prediction network:
- GRU cells followed by a fully-connected layer, which produces the candidate weights

$$\boldsymbol{p} = \boldsymbol{W}_{p} \boldsymbol{h}_{T} \tag{3}$$

In the classification network, the dynamic layer

$$\mathbf{f}^{o} = \mathbf{W}_{d}(q)\mathbf{f}_{i} + b \tag{4}$$

Hashing

• Instead of predicting entire W_d , construct $W_d(q)$ based on a small number of candidate weights

Hashing

- Instead of predicting entire \boldsymbol{W}_d , construct $\boldsymbol{W}_d(q)$ based on a small number of candidate weights
- random weight sharing technique based on hashing
- lacktriangle a single parameter in the candidate weight vector $m{p}$ is shared by multiple elements of $m{W}_d(q)$

Hashing

- Instead of predicting entire W_d , construct $W_d(q)$ based on a small number of candidate weights
- random weight sharing technique based on hashing
- ② a single parameter in the candidate weight vector \boldsymbol{p} is shared by multiple elements of $\boldsymbol{W}_d(q)$
- $oldsymbol{0}$ a predefined hash function that converts the 2D location in $oldsymbol{W}_d(q)$ to the 1D index in $oldsymbol{p}$
- 6

$$w_{mn}^d = p_{\psi(m,n)}.\eta(m,n) \tag{5}$$

- **1** ψ m, n maps a key (m, n) to a natural number in $\{1, \cdots, K\}$
- \emptyset $\eta(m,n)$ also a hash function: $\mathbb{N} \times \mathbb{N} \to \{-1,1\}$

Results

	Open-Ended				Multiple-Choice			
	All	Y/N	Num	Others	All	Y/N	Num	Others
Question [1]	48.09	75.66	36.70	27.14	53.68	75.71	37.05	38.64
Image [1]	28.13	64.01	00.42	03.77	30.53	69.87	00.45	03.76
Q+I [1]	52.64	75.55	33.67	37.37	58.97	75.59	34.35	50.33
LSTM Q [1]	48.76	78.20	35.68	26.59	54.75	78.22	36.82	38.78
LSTM Q+I [1]	53.74	78.94	35.24	36.42	57.17	78.95	35.80	43.41
CONCAT	54.70	77.09	36.62	39.67	59.92	77.10	37.48	50.31
RAND-GRU	55.46	79.58	36.20	39.23	61.18	79.64	38.07	50.63
CNN-FIXED	56.74	80.48	37.20	40.90	61.95	80.56	38.32	51.40
DPPnet	57.22	80.71	37.24	41.69	62.48	80.79	38.94	52.16