Review Series of Recent Deep Learning Papers: Parameter Prediction Paper: Learning to Learn by gradient descent by gradient descent

Marcin Andrychowicz, Misha Denil, Sergio Gmez Colmenarejo, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas NIPS 2016

Reviewed by : Arshdeep Sekhon

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

Auguet 25 2018

A standard machine learning algorithm

$$heta^* = {\it arg} \min_{ heta} f(heta)$$

Reviewed by : Arshdeep Sekhon (University *Review Series of Recent Deep Learning Paper*

(1)

A standard machine learning algorithm

$$heta^* = rg \min_{ heta} f(heta)$$

A standard optimizer

$$\theta t + 1 = \theta_t - \alpha_t \nabla f(\theta_t) \tag{2}$$

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

(1)

Optimization strategies tailored to different classes of tasks:

- Deep Learning: High Dimensional, non convex optimization problems Adagrad, RMSprop, Rprop, etc.
- Combinatorial Optimization: Relaxations

Optimization strategies tailored to different classes of tasks:

- Deep Learning: High Dimensional, non convex optimization problems Adagrad, RMSprop, Rprop, etc.
- Combinatorial Optimization: Relaxations

Generally, hand designed update rules.

Meta-learning / Learning to Learn

Replace hand designed update rules with learned update rule

$$\theta_{t+1} = \theta_t + g_t(\nabla(f(\theta_t)), \phi)$$
(3)

 g_t is the optimizer with its own parameters

Meta-learning / Learning to Learn

Replace hand designed update rules with learned update rule

$$\theta_{t+1} = \theta_t + g_t(\nabla(f(\theta_t)), \phi)$$
(3)

 g_t is the optimizer with its own parameters

 g_t is a recurrent neural network that predicts update at each timestep, parameterised by ϕ

Find an optimizer with learned updates (instead of hand designed updates) that performs well on a class of optimization problems.

Find an optimizer with learned updates (instead of hand designed updates) that performs well on a class of optimization problems.

Generalization in machine learning: Capacity to make predictions about the target at novel unseen points

Find an optimizer with learned updates (instead of hand designed updates) that performs well on a class of optimization problems.

Generalization in machine learning: Capacity to make predictions about the target at novel unseen points Generalization in 'Learning to Learn' context: Optimizer should perform

well in unseen problems of the same 'type':

Find an optimizer with learned updates (instead of hand designed updates) that performs well on a class of optimization problems.

Generalization in machine learning: Capacity to make predictions about the target at novel unseen points

Generalization in 'Learning to Learn' context: Optimizer should perform well in unseen problems of the same 'type':

transfer learning

- When can you say an optimizer is good?
- 2 θ^* (optimal parameters) is a function of the class of functions f being optimized and the optimizer parameters

$$\theta^*(f,\phi) \tag{4}$$

- When can you say an optimizer is good?
- **②** θ^* (optimal parameters) is a function of the class of functions f being optimized and the optimizer parameters

$$\theta^*(f,\phi) \tag{4}$$

Sected Loss

$$\mathbb{L}(\phi) = \mathbb{E}_f \Big[f(\theta^*(f,\phi)) \Big]$$
(5)

- When can you say an optimizer is good?
- θ* (optimal parameters) is a function of the class of functions f being optimized and the optimizer parameters

$$\theta^*(f,\phi) \tag{4}$$

Expected Loss

$$\mathbb{L}(\phi) = \mathbb{E}_f \Big[f(\theta^*(f,\phi)) \Big]$$
(5)

Expected Loss with RNN optimizer

$$\mathbb{L}(\phi) = \mathbb{E}_f \left[\sum_{t=1}^T w_t f(\theta_t) \right]$$
(6)

$$\theta_{t+1} = \theta_t + g_t \tag{7}$$

$$\begin{pmatrix} g_t \\ h_{t+1} \end{pmatrix} = m(\nabla_t, h_t, \phi)$$

- When can you say an optimizer is good?
- θ* (optimal parameters) is a function of the class of functions f being optimized and the optimizer parameters

$$\theta^*(f,\phi) \tag{4}$$

Expected Loss

$$\mathbb{L}(\phi) = \mathbb{E}_f \Big[f(\theta^*(f,\phi)) \Big]$$
(5)

Expected Loss with RNN optimizer

$$\mathbb{L}(\phi) = \mathbb{E}_f \left[\sum_{t=1}^T w_t f(\theta_t) \right]$$
(6)

$$\theta_{t+1} = \theta_t + g_t \tag{7}$$

$$\begin{pmatrix} g_t \\ h_{t+1} \end{pmatrix} = m(\nabla_t, h_t, \phi)$$

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper August 25, 2018 6 / 10

Computational Graph used for computing the gradient

Minimize loss L(φ)w.r.t the parameters of the optimizer (φ)
 calculate δL/δφ and backpropagate through time

backpropagation through the computational graph

backpropagation through the computational graph
 Assumption: Optimizee gradients do not depend on optimizer parameters

•
$$\nabla_t = \nabla_{\theta} f(\theta_t)$$
; $\frac{\nabla_t}{\delta \phi} = 0$: Drop gradients along dotted edges

backpropagation through the computational graph
 Assumption: Optimizee gradients do not depend on optimizer parameters

•
$$\nabla_t = \nabla_{\theta} f(\theta_t)$$
; $\frac{\nabla_t}{\delta \phi} = 0$: Drop gradients along dotted edges

Coordinate-wise LSTM optimizer

Issue: Huge hidden state RNN if we want an update for each parameter

$$\theta_{t+1} = \theta_t + g_t \tag{8}$$
$$\begin{pmatrix} g_t \\ h_{t+1} \end{pmatrix} = m(\nabla_t, h_t, \phi)$$

- Solution: use an RNN to get an update coordinate wise
- Oordinate wise LSTM shares the weights across all parameters

Separate hidden states, but shared parameters

Experiments and Results: Quadratic Functions

Quadratic Functions:

$$f(\theta) = ||W\theta - y||_2^2 \tag{9}$$

- Optimzer trained on random functions from this family
- Itest on a random function sampled from this family distribution

