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Optimizer

A standard machine learning algorithm

θ∗ = arg min
θ

f (θ) (1)

A standard optimizer

θt + 1 = θt − αt∇f (θt) (2)
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Motivation

Optimization strategies tailored to different classes of tasks:

Deep Learning: High Dimensional, non convex optimization problems
Adagrad,RMSprop, Rprop, etc.
Combinatorial Optimization: Relaxations

Generally, hand designed update rules.
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Learning to Learn

Meta-learning / Learning to Learn

Replace hand designed update rules with learned update rule

θt+1 = θt + gt(∇(f (θt)), φ) (3)

gt is the optimizer with its own parameters

gt is a recurrent neural network that predicts update at each timestep,
parameterised by φ
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Generalization for optimizers

Goal

Find an optimizer with learned updates (instead of hand designed updates)
that performs well on a class of optimization problems.

Generalization in machine learning: Capacity to make predictions about
the target at novel unseen points

Generalization in ’Learning to Learn’ context: Optimizer should perform
well in unseen problems of the same ’type’:

transfer learning
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Learning to Learn with Recurrent Neural Networks

1 When can you say an optimizer is good?
2 θ∗ (optimal parameters) is a function of the class of functions f being

optimized and the optimizer parameters

θ∗(f , φ) (4)

3 Expected Loss

L(φ) = Ef

[
f (θ∗(f , φ))

]
(5)

4 Expected Loss with RNN optimizer

L(φ) = Ef

[ T∑
t=1

wt f (θt)
]

(6)

θt+1 = θt + gt (7)(
gt

ht+1

)
= m(∇t , ht , φ)

5 Generate updates at each timestep using a recurrent neural network.
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Optimizing the optimizer

Computational Graph used for computing the gradient

1 Minimize loss L(φ)w.r.t the parameters of the optimizer (φ)

2 calculate
δL
δφ

and backpropagate through time
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Optimizing the optimizer

1 backpropagation through the computational graph

2 Assumption: Optimizee gradients do not depend on optimizer
parameters

3 ∇t = ∇θf (θt) ;
∇t

δφ
= 0: Drop gradients along dotted edges
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Coordinate-wise LSTM optimizer

1 Issue: Huge hidden state RNN if we want an update for each
parameter

θt+1 = θt + gt (8)(
gt

ht+1

)
= m(∇t , ht , φ)

2 Solution: use an RNN to get an update coordinate wise
3 Coordinate wise LSTM shares the weights across all parameters

Separate hidden states, but shared parameters
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Experiments and Results: Quadratic Functions

1 Quadratic Functions:

f (θ) = ||W θ − y ||22 (9)

2 Optimzer trained on random functions from this family
3 Test on a random function sampled from this family distribution

4

Learning Curves
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