Review Series of Recent Deep Learning Papers: Parameter Prediction Paper: Learning Feed-Forward One-Shot Learners Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi NIPS 2016

Reviewed by : Arshdeep Sekhon

¹Department of Computer Science, University of Virginia https://qdata.github.io/deep2Read/

August 25, 2018

One Shot Learning

Learn a concept (classifier) from a single example

Learning Feed-Forward One-Shot Learners

One Shot Learning

Learn a concept (classifier) from a single example

Task: Identify a character from the Armenian Alphabet

Learning Feed-Forward One-Shot Learners

One Shot Learning

Learn a concept (classifier) from a single example

Task: Identify a character from the Armenian Alphabet The model hasn't seen the alphabet during training

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

Learning Feed-Forward One-Shot Learners

One Shot Learning

Learn a concept (classifier) from a single example

Offline Training

Siamese Architecture

$$\min_{W'} \frac{1}{n} \sum_{i=1}^{n} Loss(\langle \varphi(x_i; W), \varphi(z_i; W) \rangle), \ell_i)$$
(1)

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

3

The Task

Given one exemplar, recognize other instances of the same class.

The Task

Given one exemplar, recognize other instances of the same class.

Dynamic Parameter Prediction: Online Phase

Learnet

predictor

The Task

Given one exemplar, recognize other instances of the same class.

Dynamic Parameter Prediction: Online Phase

Learnet

Given a single example z predict parameters for predictor

$$W(z) = \omega(z, W') \tag{2}$$

predictor

$$y = \varphi(x, W(z)) \tag{3}$$

August 25, 2018 5 / 15

The Task

Given one exemplar, recognize other instances of the same class.

Dynamic Parameter Prediction: Online Phase

Learnet

Given a single example z predict parameters for predictor

$$W(z) = \omega(z, W') \tag{2}$$

predictor

$$y = \varphi(x, W(z)) \tag{3}$$

'Learning to Learn' approach

Reviewed by : Arshdeep Sekhon (University *Review Series of Recent Deep Learning Paper*

Standard Discriminative Learning

۲

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$
(4)

Standard Discriminative Learning

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$
(

Also add regularization

۲

• However, not enough for one shot learning still.

4)

Standard Discriminative Learning

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$

Also add regularization

۲

- However, not enough for one shot learning still.
- Solution: Learning to learn
- Inject prior information in the task

(4)

Standard Discriminative Learning

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$
(4)

Also add regularization

٠

- However, not enough for one shot learning still.
- Solution: Learning to learn
- Inject prior information in the task
- Prior Information about the learning domain is introduced in the offline phase.

The Learnet

$$W = \omega(z_i, W') \tag{5}$$

A 1

3

The Learnet

$$W = \omega(z_i, W') \tag{5}$$

Task: Find optimal parameters W' of the learnet.

The Learnet

$$W = \omega(z_i, W') \tag{5}$$

Task: Find optimal parameters W' of the learnet.

old standard discriminative objective function

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$
(6)

 ℓ_i is true label of x_i

The Learnet

$$W = \omega(z_i, W') \tag{5}$$

Task: Find optimal parameters W' of the learnet.

old standard discriminative objective function

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, W), \ell_i)$$
(6)

 ℓ_i is true label of x_i

New One Shot discriminative objective function

$$\min_{W'} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, \omega(z_i, W')), \ell_i)$$

 ℓ_i is positive if (x_i, z_i) are of the same class.

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

(7)

New One Shot discriminative objective function

$$\min_{W'} \frac{1}{n} \sum_{i=1}^{n} Loss(\varphi(x_i, \omega(z_i, W')), \ell_i)$$
(8)

 ℓ_i is positive if (x_i, z_i) are of the same class. Training Data: labeled sample pairs (x_i, ℓ_i) and (z_i, ℓ_i) triplets (x_i, z_i, ℓ_i)

A fully connected linear layer:

$$y = Wx + b \tag{9}$$

 $x \in \mathbb{R}^d$, ouptuts $y \in \mathbb{R}^k$, weights $W \in \mathbb{R}^{d \times k}$ and biases $b \in \mathbb{R}^k$

A fully connected linear layer:

$$y = Wx + b \tag{9}$$

 $x \in \mathbb{R}^d$, ouptuts $y \in \mathbb{R}^k$, weights $W \in \mathbb{R}^{d \times k}$ and biases $b \in \mathbb{R}^k$

The Learnet

$$W = \omega(z_i, W') \tag{10}$$

$$y = \omega(z)x + b(z) \tag{11}$$

$$\omega: \mathbb{R}^m \to \mathbb{R}^{d \times k} \tag{12}$$

A fully connected linear layer:

$$y = Wx + b \tag{9}$$

 $x \in \mathbb{R}^d$, ouptuts $y \in \mathbb{R}^k$, weights $W \in \mathbb{R}^{d \times k}$ and biases $b \in \mathbb{R}^k$

The Learnet

$$W = \omega(z_i, W') \tag{10}$$

$$y = \omega(z)x + b(z) \tag{11}$$

$$\omega: \mathbb{R}^m \to \mathbb{R}^{d \times k} \tag{12}$$

Assuming the Learnet is also a linear layer:

$$\omega(z) = W'z \tag{13}$$

A fully connected linear layer:

$$y = Wx + b \tag{9}$$

 $x \in \mathbb{R}^d$, ouptuts $y \in \mathbb{R}^k$, weights $W \in \mathbb{R}^{d \times k}$ and biases $b \in \mathbb{R}^k$

The Learnet

$$W = \omega(z_i, W') \tag{10}$$

$$y = \omega(z)x + b(z) \tag{11}$$

$$\omega: \mathbb{R}^m \to \mathbb{R}^{d \times k} \tag{12}$$

Assuming the Learnet is also a linear layer:

$$\omega(z) = W'z \tag{13}$$

Learnet needs to learn $d \times k \times m$ parameters. d=k=100 and an exemplar with 100 features, total learnet parameters: 1 million.

The solution: Reducing output space of the learnet

Factorized Linear Layers

• Inspired by SVD $Wx = Udiag(s)V^Tx$

Factorized Linear Layers

Inspired by SVD $Wx = Udiag(s)V^Tx$

2

$$W(z).x = M' diag(\omega(z))Mx$$
 (14)

 $M \in \mathbb{R}^{d \times d}$ and $M' \in \mathbb{R}^{d \times k}$ Offline Phase: Learn constant basis U and V Online Phase(Test time): predict weights of diagonal transform

Factorized Linear Layers

Inspired by SVD $Wx = Udiag(s)V^Tx$

2

$$W(z).x = M' diag(\omega(z))Mx$$
 (14)

 $M \in \mathbb{R}^{d \times d}$ and $M' \in \mathbb{R}^{d \times k}$ Offline Phase: Learn constant basis U and V Online Phase(Test time): predict weights of diagonal transform

③ Now, the learnet needs to predict just d parameters. $\omega(z): \mathbb{R}^m \to \mathbb{R}^d$

A convolutional layer:

$$y = W * x + b \tag{15}$$

11 / 15

 $x \in \mathbb{R}^{r \times c \times d}$, $W \in \mathbb{R}^{f \times f \times d \times k}$, $y \in \mathbb{R}^{r' \times c' \times k}$ d: the number of input channels, f: filter size, k output channels

A convolutional layer:

$$y = W * x + b \tag{15}$$

 $x \in \mathbb{R}^{r \times c \times d}$, $W \in \mathbb{R}^{f \times f \times d \times k}$, $y \in \mathbb{R}^{r' \times c' \times k}$ d: the number of input channels, f: filter size, k output channels

The number of parameters to be predicted by learnet are $f^2 dk$.

Extending to CNNs

Factorize:

$$y = M' * w(z) *_d M * x + b(z)$$
 (16)

 $M \ \epsilon \mathbb{R}^{1 \times 1 \times d \times d}, \ M' \ \epsilon \mathbb{R}^{1 \times 1 \times d \times k}, w(z) \ \epsilon \mathbb{R}^{1 \times f \times f \times d}$

 $*_d$ does independent filtering of d channels: $x *_d y$ is the convolution of corresponding channels in x and y.

Factorized Convolutional layer

Extending to CNNs

Factorize:

$$y = M' * w(z) *_d M * x + b(z)$$
 (16)

 $M \ \epsilon \mathbb{R}^{1 \times 1 \times d \times d}, \ M' \ \epsilon \mathbb{R}^{1 \times 1 \times d \times k}, w(z) \ \epsilon \mathbb{R}^{1 \times f \times f \times d}$

 $*_d$ does independent filtering of d channels: $x *_d y$ is the convolution of corresponding channels in x and y. The number of elements to be predicted by learnet now are : f^2d

Factorized Convolutional layer

An example: Character Recognition in Alphabets

Test Phase(Online):

An example: Character Recognition in Alphabets

Training Phase(Offline):

alphabet 1	char 1 OL OL	β β	char 3 X X	schar 4	^{char 5} ک	^{char 6} ζ ζ	char 7 N N	char B Θ Θ	
alphabet 2	char 1 LL LL	char 2 Щ Щ	_{char 3} Ъ Ъ	_{char} 4 Ы	_{char 5} Ь Ь	char 6	_{char} 7 Ю Ю	char 8 A A	

August 25, 2018 14 / 15

Architectures

Model	Error Percentage	
Siamese (shared)	41.8	
Siamese (unshared)	34.6	
Siamese (unshared, factorized)	33.6	
Siamese Learnet (shared)	31.4	
Learnet	28.6	<

Reviewed by : Arshdeep Sekhon (University Review Series of Recent Deep Learning Paper

August 25, 2018 15 / 15