Review Series of Recent Deep Learning Papers: Parameter Prediction Paper: HyperNetworks David Ha, Andrew Dai, Quoc V. Le ICLR 2017

Reviewed by : Arshdeep Sekhon

August 25, 2018

Reviewed by : Arshdeep Sekhon Review Series of Recent Deep Learning Paper

What are Hypernetworks?

Use a smaller network to generate weights for a larger network

HyperNetwork

If the Hypernetwork is smaller than the main network, less number of trainable parameters

- If the Hypernetwork is smaller than the main network, less number of trainable parameters
- Pelaxed form of Weight Sharing

- If the Hypernetwork is smaller than the main network, less number of trainable parameters
- Relaxed form of Weight Sharing
 - O CNNs: No weight sharing at all between layers
 - **2** HyperNetworks can be used to encourage weight sharing in CNNs.

- If the Hypernetwork is smaller than the main network, less number of trainable parameters
- Relaxed form of Weight Sharing
 - O CNNs: No weight sharing at all between layers
 - Ø HyperNetworks can be used to encourage weight sharing in CNNs.
 - 8 RNNs: Weights are shared between timesteps
 - Standard RNN

$$h_t = \phi(W_h h_{t-1} + W_x x_t + b) \tag{1}$$

9 weights W_h and W_x are shared between timesteps $X = (x_1, x_2, \cdots, x_T)$

- If the Hypernetwork is smaller than the main network, less number of trainable parameters
- Relaxed form of Weight Sharing
 - O CNNs: No weight sharing at all between layers
 - Ø HyperNetworks can be used to encourage weight sharing in CNNs.
 - 8 RNNs: Weights are shared between timesteps
 - Standard RNN

$$h_t = \phi(W_h h_{t-1} + W_x x_t + b) \tag{1}$$

- **9** weights W_h and W_x are shared between timesteps $X = (x_1, x_2, \dots, x_T)$
- Can also be used to make weights different at timesteps in RNNs.

Dynamic Hypernetworks: HyperRNN

HyperRNN

HyperRNN

• MainRNN: Standard RNN

• HyperNetwork: generates weights W_h and W_x for MainRNN that are different for different timesteps

Dynamic Hypernetworks: MainRNN

Standard RNN

$$h_t = \phi(W_h h_{t-1} + W_x x_t + b) \tag{2}$$

MainRNN

$$\hat{h}_{t} = \phi(W_{h}(z_{h})h_{t-1} + W_{x}(z_{x})x_{t} + b(z_{b}))$$

$$z_{h}, z_{b} \text{ and } z_{x} \text{ are outputs of HyperNetwork}$$

$$W_{h}(z_{h}) = \langle W_{hz}, z_{h} \rangle$$

$$W_{h}(z_{x}) = \langle W_{xz}, z_{x} \rangle$$
(5)

$$b(z_b) = W_{bz} z_b + b_0 \tag{6}$$

 $W_{hz} \in \mathbb{R}^{N_h \times N_h \times N_z} \quad W_{xz} \in \mathbb{R}^{N_h \times N_x \times N_z} \quad W_{bz} \in \mathbb{R}^{N_h \times N_z}$ $<,> \text{ denotes a tensor product: } A \in \mathbb{R}^{m \times n \times p}, B \in \mathbb{R}^{p_1} < A, B > \epsilon \cdot \mathbb{R}^{m \times n}$ Reviewed by : Arshdeep Sekhon Review Series of Recent Deep Learning Paper August 25, 2018 5/14

Dynamic Hypernetworks: HyperRNN

HyperNetwork

$$\hat{x_t} = \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \tag{7}$$

$$\hat{h}_{t} = \phi(\hat{W}_{h}h_{t-1} + \hat{W}_{k}\hat{x}_{t} + b)$$
 (8)

$$z_h = LinearLayer1(\hat{h_{t-1}})$$
(9)

$$z_{x} = LinearLayer2(\hat{h_{t-1}})$$
 (10)

$$z_b = LinearLayer3(\hat{h_{t-1}})$$
(11)

$$\begin{array}{cccc} W_{hz} \ \epsilon \ \mathbb{R}^{N_h \times N_h \times N_z} & W_{xz} \ \epsilon \ \mathbb{R}^{N_h \times N_x \times N_z} & W_{bz} \ \epsilon \ \mathbb{R}^{N_h \times N_z} \\ \hat{h}_{t-1} \ \epsilon \ \mathbb{R}^{N_{\hat{h}}} \end{array}$$

Dynamic Hypernetworks: Modification to HyperRNN

MainRNN: More Memory Efficient

Scale each row of W_h linearly by an element in d where d(z) is a linear function of z.

$$h_t = \phi(d_h(z_h) \odot W_h h_{t-1} + d_x(z_x) \odot W_x x_t + b(z_b))$$
(12)

$$d_h(z_h) = W_{hz} z_h \tag{13}$$

$$d_h(z_x) = W_{xz} z_x \tag{14}$$

$$b(z_b) = W_{bz} z_b + b_0$$
 (15)

$$d_h(z_h) \odot W_h = egin{pmatrix} d_0(z)W_0\ d_1(z)W_1\ \cdots\ d_{N_h}(z)W_{N_h} \end{pmatrix}$$

Reviewed by : Arshdeep Sekhon Review Series of Recent Deep Learning Paper August

Static Hypernetworks for CNNs

Consider a CNN layer: N_{in} input channels, N_{out} input channels, and $f_{size} \times f_{size}$ filter size Total number of parameters = $N_{in} \times N_{out} \times f_{size} \times f_{size}$ Say the weights for each layer j are stored in a matrix K^j of size $N_{in}f_{size} \times f_{size}N_{out}$ for layer j

- Each layer $j = 1, \dots, D$ in CNN has a matrix K^j and an embedding z^j
- **2** The embedding matrix for all the layers $Z \in N_z \times D$.
- HyperNetwork is a two layer linear network that generates weights for each layer

4

$$K^{j} = HyperNetwork(z^{j})$$
 (16)

9 / 14

$K^{j} = HyperNetwork(z^{j})$

$$a_{i}^{j} = W_{i}z^{j} + B_{i} \qquad \forall i = 1, \cdots, N_{in}, \forall j = 1, \cdots, D$$

$$W_{i} \in \mathbb{R}^{d \times N_{z}} \qquad W_{out} \in \mathbb{R}^{f_{size} \times N_{out}f_{size} \times d}$$

$$K_{i}^{j} = \langle W_{out}, a_{i}^{j} \rangle + B_{out} \qquad \forall i = 1, \cdots, N_{in}, \forall j = 1, \cdots, D$$

$$K^{j} = \left(K_{1}^{j} \quad K_{2}^{j} \quad \cdots \quad K_{i}^{j} \quad \cdots \quad K_{N_{in}}^{j}\right)$$
(17)
$$(17)$$

э

- Weight sharing
- itotal number of learnable parameters are now
 N_z × D + (N_z + 1) × N_i + f_{size} × N_{out} × f_{size} × f_{size} × (d + 1) in comparison to
 D × N_{in} × f_{size} × N_{out} × f_{size}

11 / 14

- Use different signal for hypernetwork
- a but how to extend for 5 Histone Modifications?
- Ould this be an alternative to set modeling using RNNs
 - Take 5 HMs as 5 hypernetworks get individual embeddings
 - simple concatenation and predict parameters the same way as with one hypernetwork?
 - on problem of ordering because the inputs to hypernetwork are taken in a parallel way for each timestep t, the t_{th} bin is considered.
 - concatenation order doesnt matter because it's a simple mlp? (when converting to weights
 - but how to add attention?

Results

Model ¹	Test	Validation	Param Count
ME n-gram (Mikolov et al., 2012)	1.37		
Batch Norm LSTM (Cooijmans et al., 2016)	1.32		
Recurrent Dropout LSTM (Semeniuta et al., 2016)	1.301	1.338	
Zoneout RNN (Krueger et al., 2016)	1.27		
HM-LSTM ³ (Chung et al., 2016)	1.27		
LSTM, 1000 units ²	1.312	1.347	4.25 M
LSTM, 1250 units ²	1.306	1.340	6.57 M
2-Layer LSTM, 1000 units ²	1.281	1.312	12.26 M
Layer Norm LSTM, 1000 units ²	1.267	1.300	4.26 M
HyperLSTM (ours), 1000 units	1.265	1.296	4.91 M
Layer Norm HyperLSTM, 1000 units (ours)	1.250	1.281	4.92 M
Layer Norm HyperLSTM, 1000 units, Large Embedding (ours)	1.233	1.263	5.06 M
2-Layer Norm HyperLSTM, 1000 units	1.219	1.245	14.41 M

PennTreeBank Language Modeling

- LSTM has 128 units
- 2 Embedding size of 4
- Large Embedding 16

Results

Model ¹	enwik8	Param Count
Stacked LSTM (Graves, 2013)	1.67	27.0 M
MRNN (Sutskever et al., 2011)	1.60	
GF-RNN (Chung et al., 2015)	1.58	20.0 M
Grid-LSTM (Kalchbrenner et al., 2016)	1.47	16.8 M
LSTM (Rocki, 2016b)	1.45	
MI-LSTM (Wu et al., 2016)	1.44	
Recurrent Highway Networks (Zilly et al., 2016)	1.42	8.0 M
Recurrent Memory Array Structures (Rocki, 2016a)	1.40	
HM-LSTM ³ (Chung et al., 2016)	1.40	
Surprisal Feedback LSTM ⁴ (Rocki, 2016b)	1.37	
LSTM, 1800 units, no recurrent dropout ²	1.470	14.81 M
LSTM, 2000 units, no recurrent dropout ²	1.461	18.06 M
Layer Norm LSTM, 1800 units ²	1.402	14.82 M
HyperLSTM (ours), 1800 units	1.391	18.71 M
Layer Norm HyperLSTM, 1800 units (ours)	1.353	18.78 M
Layer Norm HyperLSTM, 2048 units (ours)	1.340	26.54 M

Hutter Prize Wikipedia Language Modeling

- Basic HyperLSTM has 256 units
- 2 Embedding size of 64

Reviewed by : Arshdeep Sekhon Review Series of Recent Deep Learning Paper

э