FMRisk


Recent Readings for Risks of Foundation Models (since 2022) (Index of Posts):

No. Read Date Title and Information We Read @
1 2024, Mar, 28 LLM interpretibility, trust and knowledge conflicts 2024-S18
2 2024, Mar, 19 LLM Hallucination 2024-S15
3 2024, Mar, 12 More FM risk 2024-S13
4 2024, Feb, 29 LLM multimodal harm responses 2024-S12
5 2024, Feb, 27 FM toxicity / harmful outputs 2024-S11
6 2024, Feb, 22 FM fairness / bias issues 2024-S10
7 2024, Feb, 20 FM privacy leakage issues 2024-S9
8 2024, Feb, 15 FM copyright infrigement 2024-S8
9 2024, Feb, 13 Survey AI Risk framework 2024-S7
10 2024, Feb, 1 GenAI Guardrails 2024-S4


Here is a detailed list of posts!



[1]: LLM interpretibility, trust and knowledge conflicts


Interpretibility

Required Readings:

Rethinking interpretability in the era of large language models

  • Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, Jianfeng Gao
  • 2024/1/30
  • Interpretable machine learning has exploded as an area of interest over the last decade, sparked by the rise of increasingly large datasets and deep neural networks. Simultaneously, large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks, offering a chance to rethink opportunities in interpretable machine learning. Notably, the capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human. However, these new capabilities raise new challenges, such as hallucinated explanations and immense computational costs. In this position paper, we start by reviewing existing methods to evaluate the emerging field of LLM interpretation (both interpreting LLMs and using LLMs for explanation). We contend that, despite their limitations, LLMs hold the opportunity to redefine interpretability with a more ambitious scope across many applications, including in auditing LLMs themselves. We highlight two emerging research priorities for LLM interpretation: using LLMs to directly analyze new datasets and to generate interactive explanations.

The Claude 3 Model Family: Opus, Sonnet, Haiku

  • https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
  • We introduce Claude 3, a new family of large multimodal models – Claude 3 Opus, our most capable offering, Claude 3 Sonnet, which provides a combination of skills and speed, and Claude 3 Haiku, our fastest and least expensive model. All new models have vision capabilities that enable them to process and analyze image data. The Claude 3 family demonstrates strong performance across benchmark evaluations and sets a new standard on measures of reasoning, math, and coding. Claude 3 Opus achieves state-of-the-art results on evaluations like GPQA [1], MMLU [2], MMMU [3] and many more. Claude 3 Haiku performs as well or better than Claude 2 [4] on most pure-text tasks, while Sonnet and Opus significantly outperform it. Additionally, these models exhibit improved fluency in non-English languages, making them more versatile for a global audience. In this report, we provide an in-depth analysis of our evaluations, focusing on core capabilities, safety, societal impacts, and the catastrophic risk assessments we committed to in our Responsible Scaling Policy [5].

More Readings:

Knowledge Conflicts for LLMs: A Survey

  • https://arxiv.org/abs/2403.08319
  • This survey provides an in-depth analysis of knowledge conflicts for large language models (LLMs), highlighting the complex challenges they encounter when blending contextual and parametric knowledge. Our focus is on three categories of knowledge conflicts: context-memory, inter-context, and intra-memory conflict. These conflicts can significantly impact the trustworthiness and performance of LLMs, especially in real-world applications where noise and misinformation are common. By categorizing these conflicts, exploring the causes, examining the behaviors of LLMs under such conflicts, and reviewing available solutions, this survey aims to shed light on strategies for improving the robustness

Transformer Debugger

  • https://github.com/openai/transformer-debugger
  • Transformer Debugger (TDB) is a tool developed by OpenAI’s Superalignment team with the goal of supporting investigations into specific behaviors of small language models. The tool combines automated interpretability techniques with sparse autoencoders. TDB enables rapid exploration before needing to write code, with the ability to intervene in the forward pass and see how it affects a particular behavior. It can be used to answer questions like, “Why does the model output token A instead of token B for this prompt?” or “Why does attention head H attend to token T for this prompt?” It does so by identifying specific components (neurons, attention heads, autoencoder latents) that contribute to the behavior, showing automatically generated explanations of what causes those components to activate most strongly, and tracing connections between components to help discover circuits.

Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

  • https://transformer-circuits.pub/2023/monosemantic-features/index.html
  • In this paper, we use a weak dictionary learning algorithm called a sparse autoencoder to generate learned features from a trained model that offer a more monosemantic unit of analysis than the model’s neurons themselves. Our approach here builds on a significant amount of prior work, especially in using dictionary learning and related methods on neural network activations , and a more general allied literature on disentanglement. We also note interim reports which independently investigated the sparse autoencoder approach in response to Toy Models, culminating in the recent manuscript of Cunningham et al.
  • related post: Decomposing Language Models Into Understandable Components https://www.anthropic.com/news/decomposing-language-models-into-understandable-components

Tracing Model Outputs to the Training Data

  • https://www.anthropic.com/news/influence-functions
  • As large language models become more powerful and their risks become clearer, there is increasing value to figuring out what makes them tick. In our previous work, we have found that large language models change along many personality and behavioral dimensions as a function of both scale and the amount of fine-tuning. Understanding these changes requires seeing how models work, for instance to determine if a model’s outputs rely on memorization or more sophisticated processing. Understanding the inner workings of language models will have substantial implications for forecasting AI capabilities as well as for approaches to aligning AI systems with human preferences. Mechanistic interpretability takes a bottom-up approach to understanding ML models: understanding in detail the behavior of individual units or small-scale circuits such as induction heads. But we also see value in a top-down approach, starting with a model’s observable behaviors and generalization patterns and digging down to see what neurons and circuits are responsible. An advantage of working top-down is that we can directly study high-level cognitive phenomena of interest which only arise at a large scale, such as reasoning and role-playing. Eventually, the two approaches should meet in the middle.

Language models can explain neurons in language models

  • https://openai.com/research/language-models-can-explain-neurons-in-language-models
  • Language models have become more capable and more widely deployed, but we do not understand how they work. Recent work has made progress on understanding a small number of circuits and narrow behaviors,[1][2] but to fully understand a language model, we’ll need to analyze millions of neurons. This paper applies automation to the problem of scaling an interpretability technique to all the neurons in a large language model. Our hope is that building on this approach of automating interpretability [3][4][5] will enable us to comprehensively audit the safety of models before deployment.

[2]: LLM Hallucination


Hallucination

In this session, our readings cover:

Required Readings:

A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions

  • https://arxiv.org/abs/2311.05232
  • The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of LLMs in real-world scenarios, which attracts increasing attention to detect and mitigate these hallucinations. In this survey, we aim to provide a thorough and in-depth overview of recent advances in the field of LLM hallucinations. We begin with an innovative taxonomy of LLM hallucinations, then delve into the factors contributing to hallucinations. Subsequently, we present a comprehensive overview of hallucination detection methods and benchmarks. Additionally, representative approaches designed to mitigate hallucinations are introduced accordingly. Finally, we analyze the challenges that highlight the current limitations and formulate open questions, aiming to delineate pathways for future research on hallucinations in LLMs.

More Readings:

LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond

  • https://arxiv.org/abs/2305.14540
  • With the recent appearance of LLMs in practical settings, having methods that can effectively detect factual inconsistencies is crucial to reduce the propagation of misinformation and improve trust in model outputs. When testing on existing factual consistency benchmarks, we find that a few large language models (LLMs) perform competitively on classification benchmarks for factual inconsistency detection compared to traditional non-LLM methods. However, a closer analysis reveals that most LLMs fail on more complex formulations of the task and exposes issues with existing evaluation benchmarks, affecting evaluation precision. To address this, we propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits. This new benchmark is 20 times more cost-effective per sample than previous benchmarks and highly reproducible, as we estimate inter-annotator agreement at about 0.9. Most LLMs struggle on SummEdits, with performance close to random chance. The best-performing model, GPT-4, is still 8\% below estimated human performance, highlighting the gaps in LLMs’ ability to reason about facts and detect inconsistencies when they occur.

Survey of Hallucination in Natural Language Generation

  • https://arxiv.org/abs/2202.03629
  • Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong Chen, Ho Shu Chan, Wenliang Dai, Andrea Madotto, Pascale Fung
  • Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation; and (3) hallucinations in large language models (LLMs). This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.

Do Language Models Know When They’re Hallucinating References?

  • https://arxiv.org/abs/2305.18248

Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models’ Alignment

  • https://arxiv.org/abs/2308.05374

[3]: More FM risk


Safety

In this session, our readings cover:

Required Readings:

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

  • https://dl.acm.org/doi/10.1145/3442188.3445922
  • The past 3 years of work in NLP have been characterized by the development and deployment of ever larger language models, especially for English. BERT, its variants, GPT-2/3, and others, most recently Switch-C, have pushed the boundaries of the possible both through architectural innovations and through sheer size. Using these pretrained models and the methodology of fine-tuning them for specific tasks, researchers have extended the state of the art on a wide array of tasks as measured by leaderboards on specific benchmarks for English. In this paper, we take a step back and ask: How big is too big? What are the possible risks associated with this technology and what paths are available for mitigating those risks? We provide recommendations including weighing the environmental and financial costs first, investing resources into curating and carefully documenting datasets rather than ingesting everything on the web, carrying out pre-development exercises evaluating how the planned approach fits into research and development goals and supports stakeholder values, and encouraging research directions beyond ever larger language models.

More Readings:

Low-Resource Languages Jailbreak GPT-4

  • AI safety training and red-teaming of large language models (LLMs) are measures to mitigate the generation of unsafe content. Our work exposes the inherent cross-lingual vulnerability of these safety mechanisms, resulting from the linguistic inequality of safety training data, by successfully circumventing GPT-4’s safeguard through translating unsafe English inputs into low-resource languages. On the AdvBenchmark, GPT-4 engages with the unsafe translated inputs and provides actionable items that can get the users towards their harmful goals 79% of the time, which is on par with or even surpassing state-of-the-art jailbreaking attacks. Other high-/mid-resource languages have significantly lower attack success rate, which suggests that the cross-lingual vulnerability mainly applies to low-resource languages. Previously, limited training on low-resource languages primarily affects speakers of those languages, causing technological disparities. However, our work highlights a crucial shift: this deficiency now poses a risk to all LLMs users. Publicly available translation APIs enable anyone to exploit LLMs’ safety vulnerabilities. Therefore, our work calls for a more holistic red-teaming efforts to develop robust multilingual safeguards with wide language coverage.

A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation

  • https://arxiv.org/abs/2305.11391
  • Large Language Models (LLMs) have exploded a new heatwave of AI for their ability to engage end-users in human-level conversations with detailed and articulate answers across many knowledge domains. In response to their fast adoption in many industrial applications, this survey concerns their safety and trustworthiness. First, we review known vulnerabilities and limitations of the LLMs, categorising them into inherent issues, attacks, and unintended bugs. Then, we consider if and how the Verification and Validation (V&V) techniques, which have been widely developed for traditional software and deep learning models such as convolutional neural networks as independent processes to check the alignment of their implementations against the specifications, can be integrated and further extended throughout the lifecycle of the LLMs to provide rigorous analysis to the safety and trustworthiness of LLMs and their applications. Specifically, we consider four complementary techniques: falsification and evaluation, verification, runtime monitoring, and regulations and ethical use. In total, 370+ references are considered to support the quick understanding of the safety and trustworthiness issues from the perspective of V&V. While intensive research has been conducted to identify the safety and trustworthiness issues, rigorous yet practical methods are called for to ensure the alignment of LLMs with safety and trustworthiness requirements.

Even More

ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation / EMNLP2023

  • Despite remarkable advances that large language models have achieved in chatbots nowadays, maintaining a non-toxic user-AI interactive environment has become increasingly critical nowadays. However, previous efforts in toxicity detection have been mostly based on benchmarks derived from social media contents, leaving the unique challenges inherent to real-world user-AI interactions insufficiently explored. In this work, we introduce ToxicChat, a novel benchmark constructed based on real user queries from an open-source chatbot. This benchmark contains the rich, nuanced phenomena that can be tricky for current toxicity detection models to identify, revealing a significant domain difference when compared to social media contents. Our systematic evaluation of models trained on existing toxicity datasets has shown their shortcomings when applied to this unique domain of ToxicChat. Our work illuminates the potentially overlooked challenges of toxicity detection in real-world user-AI conversations. In the future, ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions.

OpenAI on LLM generated bio-x-risk

  • Building an early warning system for LLM-aided biological threat creation
  • https://openai.com/research/building-an-early-warning-system-for-llm-aided-biological-threat-creation

A misleading open letter about sci-fi AI dangers ignores the real risks

https://www.aisnakeoil.com/p/a-misleading-open-letter-about-sci

Evaluating social and ethical risks from generative AI

  • https://deepmind.google/discover/blog/evaluating-social-and-ethical-risks-from-generative-ai/

Managing Existential Risk from AI without Undercutting Innovation

  • https://www.csis.org/analysis/managing-existential-risk-ai-without-undercutting-innovation

[4]: LLM multimodal harm responses


Safety

In this session, our readings cover:

Required Readings:

Cheating Suffix: Targeted Attack to Text-To-Image Diffusion Models with Multi-Modal Priors

  • Dingcheng Yang, Yang Bai, Xiaojun Jia, Yang Liu, Xiaochun Cao, Wenjian Yu
  • Diffusion models have been widely deployed in various image generation tasks, demonstrating an extraordinary connection between image and text modalities. However, they face challenges of being maliciously exploited to generate harmful or sensitive images by appending a specific suffix to the original prompt. Existing works mainly focus on using single-modal information to conduct attacks, which fails to utilize multi-modal features and results in less than satisfactory performance. Integrating multi-modal priors (MMP), i.e. both text and image features, we propose a targeted attack method named MMP-Attack in this work. Specifically, the goal of MMP-Attack is to add a target object into the image content while simultaneously removing the original object. The MMP-Attack shows a notable advantage over existing works with superior universality and transferability, which can effectively attack commercial text-to-image (T2I) models such as DALL-E 3. To the best of our knowledge, this marks the first successful attempt of transfer-based attack to commercial T2I models. Our code is publicly available at ….

A Pilot Study of Query-Free Adversarial Attack against Stable Diffusion

  • https://ieeexplore.ieee.org/document/10208563
  • Despite the record-breaking performance in Text-to-Image (T2I) generation by Stable Diffusion, less research attention is paid to its adversarial robustness. In this work, we study the problem of adversarial attack generation for Stable Diffusion and ask if an adversarial text prompt can be obtained even in the absence of end-to-end model queries. We call the resulting problem ‘query-free attack generation’. To resolve this problem, we show that the vulnerability of T2I models is rooted in the lack of robustness of text encoders, e.g., the CLIP text encoder used for attacking Stable Diffusion. Based on such insight, we propose both untargeted and targeted query-free attacks, where the former is built on the most influential dimensions in the text embedding space, which we call steerable key dimensions. By leveraging the proposed attacks, we empirically show that only a five-character perturbation to the text prompt is able to cause the significant content shift of synthesized images using Stable Diffusion. Moreover, we show that the proposed target attack can precisely steer the diffusion model to scrub the targeted image content without causing much change in untargeted image content.

More Readings:

Visual Instruction Tuning

  • Haotian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee
  • Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.

GOAT-Bench: Safety Insights to Large Multimodal Models through Meme-Based Social Abuse

  • https://arxiv.org/abs/2401.01523

Misusing Tools in Large Language Models With Visual Adversarial Examples

  • https://arxiv.org/abs/2310.03185

Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned

  • https://arxiv.org/abs/2209.07858

[5]: FM toxicity / harmful outputs


Safety

In this session, our readings cover:

Required Readings:

HarmBench: A Standardized Evaluation Framework for Automated Red Teaming and Robust Refusal

  • https://arxiv.org/abs/2402.04249
  • Automated red teaming holds substantial promise for uncovering and mitigating the risks associated with the malicious use of large language models (LLMs), yet the field lacks a standardized evaluation framework to rigorously assess new methods. To address this issue, we introduce HarmBench, a standardized evaluation framework for automated red teaming. We identify several desirable properties previously unaccounted for in red teaming evaluations and systematically design HarmBench to meet these criteria. Using HarmBench, we conduct a large-scale comparison of 18 red teaming methods and 33 target LLMs and defenses, yielding novel insights. We also introduce a highly efficient adversarial training method that greatly enhances LLM robustness across a wide range of attacks, demonstrating how HarmBench enables codevelopment of attacks and defenses. We open source HarmBench at this https URL.

Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

  • https://www.anthropic.com/news/sleeper-agents-training-deceptive-llms-that-persist-through-safety-training
  • Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoor behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoor behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.

More Readings:

SafeText: A Benchmark for Exploring Physical Safety in Language Models

  • https://arxiv.org/abs/2210.10045
  • Understanding what constitutes safe text is an important issue in natural language processing and can often prevent the deployment of models deemed harmful and unsafe. One such type of safety that has been scarcely studied is commonsense physical safety, i.e. text that is not explicitly violent and requires additional commonsense knowledge to comprehend that it leads to physical harm. We create the first benchmark dataset, SafeText, comprising real-life scenarios with paired safe and physically unsafe pieces of advice. We utilize SafeText to empirically study commonsense physical safety across various models designed for text generation and commonsense reasoning tasks. We find that state-of-the-art large language models are susceptible to the generation of unsafe text and have difficulty rejecting unsafe advice. As a result, we argue for further studies of safety and the assessment of commonsense physical safety in models before release.

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

  • https://arxiv.org/abs/2310.03693

Lessons learned on language model safety and misuse

  • https://openai.com/research/language-model-safety-and-misuse

Planning red teaming for large language models (LLMs) and their applications

https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/red-teaming

ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models

  • https://arxiv.org/abs/2310.09624

[6]: FM fairness / bias issues


Bias

In this session, our readings cover:

Required Readings:

Evaluating and Mitigating Discrimination in Language Model Decisions

  • https://arxiv.org/abs/2312.03689
  • As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at this https URL

More Readings:

Learning from Red Teaming: Gender Bias Provocation and Mitigation in Large Language Models

  • https://arxiv.org/abs/2310.11079

Machine Learning in development: Let’s talk about bias!

  • https://huggingface.co/blog/ethics-soc-2
  • https://huggingface.co/blog/evaluating-llm-bias

Exploring Social Bias in Chatbots using Stereotype Knowledge WNLP@ACL2019

Bias and Fairness in Large Language Models: A Survey

  • https://arxiv.org/abs/2309.00770
  • Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

A Survey on Fairness in Large Language Models

  • https://arxiv.org/abs/2308.10149
  • Large language models (LLMs) have shown powerful performance and development prospect and are widely deployed in the real world. However, LLMs can capture social biases from unprocessed training data and propagate the biases to downstream tasks. Unfair LLM systems have undesirable social impacts and potential harms. In this paper, we provide a comprehensive review of related research on fairness in LLMs. First, for medium-scale LLMs, we introduce evaluation metrics and debiasing methods from the perspectives of intrinsic bias and extrinsic bias, respectively. Then, for large-scale LLMs, we introduce recent fairness research, including fairness evaluation, reasons for bias, and debiasing methods. Finally, we discuss and provide insight on the challenges and future directions for the development of fairness in LLMs.

</div>


[7]: FM privacy leakage issues


Mitigate LLMEvaluate

In this session, our readings cover:

Required Readings:

Are Large Pre-Trained Language Models Leaking Your Personal Information?

  • https://arxiv.org/abs/2205.12628
  • Jie Huang, Hanyin Shao, Kevin Chen-Chuan Chang Are Large Pre-Trained Language Models Leaking Your Personal Information? In this paper, we analyze whether Pre-Trained Language Models (PLMs) are prone to leaking personal information. Specifically, we query PLMs for email addresses with contexts of the email address or prompts containing the owner’s name. We find that PLMs do leak personal information due to memorization. However, since the models are weak at association, the risk of specific personal information being extracted by attackers is low. We hope this work could help the community to better understand the privacy risk of PLMs and bring new insights to make PLMs safe.

Privacy Risks of General-Purpose Language Models

  • https://ieeexplore.ieee.org/abstract/document/9152761
  • We find the text embeddings from general-purpose language models would capture much sensitive information from the plain text. Once being accessed by the adversary, the embeddings can be reverse-engineered to disclose sensitive information of the victims for further harassment. Although such a privacy risk can impose a real threat to the future leverage of these promising NLP tools, there are neither published attacks nor systematic evaluations by far for the mainstream industry-level language models. To bridge this gap, we present the first systematic study on the privacy risks of 8 state-of-the-art language models with 4 diverse case studies. By constructing 2 novel attack classes, our study demonstrates the aforementioned privacy risks do exist and can impose practical threats to the application of general-purpose language models on sensitive data covering identity, genome, healthcare and location. For example, we show the adversary with nearly no prior knowledge can achieve about 75% accuracy when inferring the precise disease site from Bert embeddings of patients’ medical descriptions. As possible countermeasures, we propose 4 different defenses (via rounding, different…

More Readings:

Privacy in Large Language Models: Attacks, Defenses and Future Directions

  • https://arxiv.org/abs/2310.10383
  • The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary’s assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration.

ProPILE: Probing Privacy Leakage in Large Language Models

  • https://arxiv.org/abs/2307.01881
  • Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, Seong Joon Oh The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.

[8]: FM copyright infrigement


Mitigate LLMEvaluate

In this session, our readings cover:

Required Readings:

Foundation Models and Fair Use

  • Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley, Percy Liang
  • URL
  • Existing foundation models are trained on copyrighted material. Deploying these models can pose both legal and ethical risks when data creators fail to receive appropriate attribution or compensation. In the United States and several other countries, copyrighted content may be used to build foundation models without incurring liability due to the fair use doctrine. However, there is a caveat: If the model produces output that is similar to copyrighted data, particularly in scenarios that affect the market of that data, fair use may no longer apply to the output of the model. In this work, we emphasize that fair use is not guaranteed, and additional work may be necessary to keep model development and deployment squarely in the realm of fair use. First, we survey the potential risks of developing and deploying foundation models based on copyrighted content. We review relevant U.S. case law, drawing parallels to existing and potential applications for generating text, source code, and visual art. Experiments confirm that popular foundation models can generate content considerably similar to copyrighted material. Second, we discuss technical mitigations that can help foundation models stay in line with fair use. We argue that more research is needed to align mitigation strategies with the current state of the law. Lastly, we suggest that the law and technical mitigations should co-evolve. For example, coupled with other policy mechanisms, the law could more explicitly consider safe harbors when strong technical tools are used to mitigate infringement harms. This co-evolution may help strike a balance between intellectual property and innovation, which speaks to the original goal of fair use. But we emphasize that the strategies we describe here are not a panacea and more work is needed to develop policies that address the potential harms of foundation models.

Extracting Training Data from Diffusion Models

  • Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, Eric Wallace
  • Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted significant attention due to their ability to generate high-quality synthetic images. In this work, we show that diffusion models memorize individual images from their training data and emit them at generation time. With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models, ranging from photographs of individual people to trademarked company logos. We also train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy. Overall, our results show that diffusion models are much less private than prior generative models such as GANs, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.

A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT

  • https://arxiv.org/abs/2303.04226
  • Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

More Readings:

Audio Deepfake Detection: A Survey

  • https://arxiv.org/abs/2308.14970
  • Audio deepfake detection is an emerging active topic. A growing number of literatures have aimed to study deepfake detection algorithms and achieved effective performance, the problem of which is far from being solved. Although there are some review literatures, there has been no comprehensive survey that provides researchers with a systematic overview of these developments with a unified evaluation. Accordingly, in this survey paper, we first highlight the key differences across various types of deepfake audio, then outline and analyse competitions, datasets, features, classifications, and evaluation of state-of-the-art approaches. For each aspect, the basic techniques, advanced developments and major challenges are discussed. In addition, we perform a unified comparison of representative features and classifiers on ASVspoof 2021, ADD 2023 and In-the-Wild datasets for audio deepfake detection, respectively. The survey shows that future research should address the lack of large scale datasets in the wild, poor generalization of existing detection methods to unknown fake attacks, as well as interpretability of detection results.
  • https://openreview.net/forum?id=pSf8rrn49H
  • The images generated by text-to-image models could be accused of the copyright infringement, which has aroused heated debate among AI developers, content creators, legislation department and judicature department. Especially, the state-of-the-art text-to-image models are capable of generating extremely high-quality works while at the same time lack the ability to attribute credits to the original creators, which brings anxiety to the artists’ community. In this paper, we propose a conceptual framework – copyright Plug-in Market – to address the tension between the users, the content creators and the generative models. We introduce three operations in the \copyright Plug-in Market: addition, extraction and combination to facilitate proper credit attribution in the text-to-image procedure and enable the digital copyright protection. For the addition operation, we train a \copyright plug-in for a specific copyrighted concept and add it to the generative model and then we are able to generate new images with the copyrighted concept, which abstract existing solutions of portable LoRAs. We further introduce the extraction operation to enable content creators to claim copyrighted concept from infringing generative models and the combination operation to enable users to combine different \copyright plug-ins to generate images with multiple copyrighted concepts. We believe these basic operations give good incentives to each participant in the market, and enable enough flexibility to thrive the market. Technically, we innovate an inverse LoRA’’ approach to instantiate the extraction operation and propose a data-ignorant layer-wise distillation’’ approach to combine the multiple extractions or additions easily. To showcase the diverse capabilities of copyright plug-ins, we conducted experiments in two domains: style transfer and cartoon IP recreation. The results demonstrate that copyright plug-ins can effectively accomplish copyright extraction and combination, providing a valuable copyright protection solution for the era of generative AIs.

Membership Inference Attacks against Language Models via Neighbourhood Comparison

https://aclanthology.org/2023.findings-acl.719/

Deepfake Taylor Swift event:

  • https://www.cbsnews.com/news/taylor-swift-artificial-intellignence-ai-4chan/

[9]: Survey AI Risk framework


Mitigate LLMEvaluate

In this session, our readings cover:

Required Readings:

TrustLLM: Trustworthiness in Large Language Models

  • https://arxiv.org/abs/2401.05561
  • Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.

A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly

  • Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity
  • https://arxiv.org/abs/2312.02003

More Readings:

Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks

  • https://arxiv.org/abs/2212.14834
  • Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak’ attacks on models like ChatGPT a

Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition

  • https://arxiv.org/abs/2311.16119
  • Large Language Models (LLMs) are deployed in interactive contexts with direct user engagement, such as chatbots and writing assistants. These deployments are vulnerable to prompt injection and jailbreaking (collectively, prompt hacking), in which models are manipulated to ignore their original instructions and follow potentially malicious ones. Although widely acknowledged as a significant security threat, there is a dearth of large-scale resources and quantitative studies on prompt hacking. To address this lacuna, we launch a global prompt hacking competition, which allows for free-form human input attacks. We elicit 600K+ adversarial prompts against three state-of-the-art LLMs. We describe the dataset, which empirically verifies that current LLMs can indeed be manipulated via prompt hacking. We also present a comprehensive taxonomical ontology of the types of adversarial prompts.

Even More:

ACL 2024 Tutorial: Vulnerabilities of Large Language Models to Adversarial Attacks

  • https://llm-vulnerability.github.io/

Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration

  • https://www.tandfonline.com/doi/full/10.1080/15228053.2023.2233814

  • https://huggingface.co/blog?tag=ethics

    • https://huggingface.co/blog/ethics-diffusers
    • https://huggingface.co/blog/model-cards
    • https://huggingface.co/blog/us-national-ai-research-resource

NIST AI RISK MANAGEMENT FRAMEWORK

  • https://www.nist.gov/itl/ai-risk-management-framework
  • https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
  • https://airc.nist.gov/AI_RMF_Knowledge_Base/Roadmap
  • EU AI Act / GDPR

[10]: GenAI Guardrails


Mitigate

In this session, our readings cover:

Required Readings:

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

  • https://arxiv.org/abs/2312.06674
  • We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model’s capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

More Readings:

Not what you’ve signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection

  • [Submitted on 23 Feb 2023 (v1), last revised 5 May 2023 (this version, v2)]
  • https://arxiv.org/abs/2302.12173
  • Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, Mario Fritz
  • Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks’ practical viability against both real-world systems, such as Bing’s GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application’s functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.
  • Subjects: Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Computers and Society (cs.CY)

Baseline Defenses for Adversarial Attacks Against Aligned Language Models

  • https://github.com/neelsjain/baseline-defenses



Here is a name list of posts!


More FM risk

38 minute read

In this session, our readings cover: