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Introduction

Neural Turing Machines [1] (NTMs) aim to equip neural networks
with external memory

They have a memory matrix that they can read and write from at
each timestep

This reading and writing process is fully differentiable and can be
trained with gradient descent

Similar to Software 2.0 [2] but a much less constrained program
search.
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NTM Overview

NTMs broadly consist of an LSTM ’Controller’ network and several
Read/Write Head networks. The controller takes the task input and
produces an output, while the read and write heads interact with the
external memory.
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External Memory

The memory is just an NxM array
I N is the number of memory locations
I M is the size of each address

The contents of the memory at time t are written Mt
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Reading from Memory

At each time t, a Read Head network calculates a weight vector wt s.t.∑
i

wt[i ] = 1, 0 ≤ wt[i ] ≤ 1,∀i

The final read vector rt is calculated:

rt =
N−1∑
i

wt[i ]Mt [i , :]

This is basically an attention weighting over the memory, which was a
technique that was just starting to take off in 2014...
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Reading from Memory

Figure: Reading mechanism diagram [4]
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Writing to Memory

Two steps:
1 Erase parts of the memory

I the Write Head calculates another weight vector wt along with an
erase vector et with each elements in (0, 1)

Mt [i , :] = Mt−1[i , :]− (Mt−1[i , :])(wt[i ]et)

When the weighting and erase element are 1, we’re wiping the memory.
If either are 0, nothing is changed.

2 Add new data to the memory
I the Write Head also outputs an add vector at, which is partially

inserted into memory:

Mt [i , :] = Mt [i , :] + wt[i ]at
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Addressing Mechanisms

The location in memory where we read and write is determined by the
weight vectors wt of each head.

We want to be able to focus on different addresses based on both
what’s in that address and where it is in memory.
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Focusing by Content

The ’content weighting’ wc
t is determined by similarity of a key vector kt

and each row of memory.

wc
t [i ] =

exp(βtK[kt ,Mt [i , :]])∑
j exp(βtK[kt ,Mt [j , :]])

Where K [·, ·] is some similarity measure. Original paper uses cosine
similarity. βt is the ’key strength’ (another trainable param)

This concept shows up often in modern NLP models with attention
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Focusing by Location

Once we’ve focused based on content (wc
t ) we can adjust this weighting

based on the location of each address, if the problem requires it.

If the program we’re trying to learn is addition, we care about where
the numbers are stored in memory, not what they are.

Many programs need to find some content (like an object in Python),
and then index into a particular attribute of that object.

There are a few steps...

Jake Grigsby (University of Virginia) Neural Turing Machines April 19, 2020 10 / 22



Focusing by Location

First we choose how much of the content-based weighting we care about
using an ‘interpolation gate‘ gt

wt
g = gtw

c
t + (1− gt)wt−1

So if the gate is zero we don’t care about the content weighting at all and
just revert to wt−1
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Focusing by Location

Next, we use a ‘shift kernel‘ st

wt[i ] =
N−1∑
j=0

wg
t [j ]st(i − j)

Which is just a circular 1D convolution over the weight vector. If we want
to shift by a max of n slots, then st is a length 2n + 1 kernel.
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Focusing by Location

Example of a simple ’shift backwards’ kernel. We’ve made wt circular by
appending the last element to the front and the first element to the back
[4].
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Focusing by Location

Finally, we ’sharpen’ the focus of wt with another trainable parameter γt :

wt[i ] =
wt[i ]

γt∑
j wt[j ]γt
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Addressing Summary

In summary, we calculate wt by:

1 Weighting based on content
similarity

2 Forgetting parts of that content
we don’t want to use

3 Shifting the focus based on
location

4 Sharpening the focus vector to
adjust the scope of the changes
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The Controller

The controller is typically an LSTM that takes the task’s input x and
outputs an ’instruction vector’ that is sent to each of the read and write
heads.
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The Neural Turing Machine Cell

A summary of the whole process:

1 The task input xt is passed to the controller along with all the rt−1s

2 The LSTM controller returns an instruction vector ht.

3 ht is passed to each of the read and write heads, along with that
heads’ wt−1

4 Write Heads use their networks to turn ht and wt−1 into (kt, βt , gt ,
st, γt , et, at), and use these to calculate wt and write to memory.

5 Read Heads use their networks to turn ht and wt−1 into (kt, βt , gt ,
st, γt), and use these to calculate wt and read from memory (rt).

6 A final network computes the output ŷt from the controller output ht
and all of the read vectors.
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Experiments: Copy Task

Given a binary sequence x{0:T}, output an exact copy. [1]
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Experiments: Copy Task

Sample outputs on the copy task, with errors highlighted. [1]
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Experiments: Copy Task

Read and write activity during copy task. [1]
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More Experiments, Shortcomings

The original paper [1] includes more examples of simple programs
NTMs can learn.

I That section is pretty easy to follow once you have the general idea
behind the training loop and the format of these diagrams.

Why aren’t we all using NTMs?
I They are difficult/unstable to train [4] [3]
I Code was never released by the orignal authors, and the paper is so

light on details about how the model is actually trained that it took 4
years [3] to figure out a correct open source implementation!
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