Attention is All You Need

Vaswani et al.

2017

Presented by Eli Lifland, 2/23/2020

Background

- CNN-based methods popular
 - Difficult to learn dependencies between distant positions
- RNNs SOTA: LSTMs, Gated RNNs
 - Generate sequence of hidden states h_t as function of h_{t-1}, input at position t
 - Sequential nature doesn't allow for parallelization within training examples
- Encoder-decoder architectures
- Attention allows modeling of dependencies without regard to distance between positions
 - Before: used with RNNs
 - But attention is all you need! Transformers use no RNNs or convolution

Attention: General Idea

Layer: 5 \$ Attent	tion: Input - Input 🔶	
The_ animal_ didn_ '_ t_		The_ animal_ didn_ '_ t_
cross_ the_ street_		cross_ the_ street_
because_ it_		because_ it_
was_ too_		was_ too_
tire d_		tire d_

Attention: Scaled Dot-Product

Attention: Matrix Operations

Q

×

×

	N						

=

V

Attention: Multi-Head

1) This is our input sentence* 2) We embed each word* 3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

(0

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

40

Why Attention?

- Low computational complexity per layer
- High level of parallelizability (low number of sequential operations required)
- Low path length between long-range dependencies
 - Easier to learn long-range dependencies even though in principle possible with RNNs, CNNs

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length		
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)		
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)		
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$		
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)		

Transformer Architecture: Encoder-Decoder Structure

Transformer Architecture: Architecture of Encoders, Decoders

- Modify self-attention layers in decoder to prevent positions from attending to subsequent positions (masking)
- This unidirectionality later removed for BERT

Transformer Architecture: Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Transformer Architecture: Full

Results

N 41	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$ 2.3 \cdot 10^{19}		
Transformer (big)	28.4	41.8			

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23 of WSJ)

Parser	Training	WSJ 23 F1	
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3	
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4	
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4	
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7	
Transformer (4 layers)	WSJ only, discriminative	91.3	
Zhu et al. (2013) [40]	semi-supervised	91.3	
Huang & Harper (2009) [14]	semi-supervised	91.3	
McClosky et al. (2006) [26]	semi-supervised	92.1	
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1	
Transformer (4 layers)	semi-supervised	92.7	
Luong et al. (2015) [23]	multi-task	93.0	
Dyer et al. (2016) [8]	generative	93.3	

Results: Ablation

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base model. All metrics are on the English-to-German translation development set, newstest2013. Listed perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to per-word perplexities.

	N	d _{model}	$d_{ m ff}$	h	d_k	d_v	Pdrop	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$params \times 10^6$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(1)				4	128	128				5.00	25.5	
(A)			16	16 32 32				4.91	25.8			
				32	16	16				5.01	25.4	
					16					5.16	25.1	58
(B)					32					5.01	25.4	60
2	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbede	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213