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Supervised

VS.
Unsupervised

= Supervised
= Given labels
= (Classification

= Learns to map a function y’={(x), given labeled data y

= Unsupervised

= Model left to figure out the underlying structure of the
data

= Clustering

= Generative models

* Learns the intrinsic distribution function of the input data
p(x) (or p(x,y) if there are multiple targets/classes in the
dataset), allowing them to generate both synthetic inputs
x’ and outputs/targets y’, typically given some hidden
parameters



_ = Models that provided a parametric specification of a

probability distribution function

®= Deep Boltzmann machines

= Require Markov chains

P reVI ous WO rk = Discriminative models have several key limitations

= Can’t model p(x), i.e. the probability of seeing a certain
image

= Thus, can’t sample from p(x), i.e. can’t generate new

images



= Generative

= Learn a generative model

= Adversarial

* Trained in an adversarial setting

= Networks

= Uses deep neural networks




= Uses 2 neural networks

= Takes in random noise as input (latent space)

= Generates fake images

®* Needs to learn how to create data in such a way that the
Discriminator isn’t able to distinguish it as fake anymore

A rC h Ite Ct u re * Human art counterfeiter
® Discriminator

= Tries to distinguish between real images and generated
images

= Art expert who tries to detect works as truthful or fraud

= The competition is what makes them both improve
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Generator: G(z, 01)
®= Maps random input noise to desired data space x
= Tries to mimic x = G(2)

® The loss maximizes D(G(z))

Discriminator: D(x, 02)
= OQutputs probability that x is from the real dataset in (0,1)

® The loss maximizes D(x) and minimizes D(G(z))

Log of the probability is used in loss functions to heavily
penalize confident errors

Ideally, the networks reach a Nash equilibrium where

neither can improve anymore

" Pgata(x) = Pgen(x) Vx
D(x) =3 Vx



min max V(D, G) = Egnpy, () [10g D(@)] + Eznp, (2) [log(1 — D(G(2)))].

V- llog D(a:) + log(1 ~ D(G(z:))

=1

v% 3" log(1 — D(G(x))

1=1



Training




Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(!), ..., z(™} from noise prior p,(2).
e Sample minibatch of m examples {z(),..., (™)} from data generating distribution
pdata(m)'

e Update the discriminator by ascending its stochastic gradient:

Vo 3= [08D (=) +10g (1- 2 (6 (=))].
end for

e Sample minibatch of m noise samples {z(!), ..., z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3 (12 (6 (<)),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Latent random variable
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Latent random variable
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Deep directed Deep undirected Generative Adv 2l model
graphical models graphical models autoencoders A
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