CHAPTER 6 DEEP LEARNING

CNNS

- Convolutional Neural Nets
- Spatial understanding
- Local receptive fields (filter, kernel)
- Translation invariance
- Less parameters than MLP
 - 20 5x5 kernels -> total of 20×(5x5+1)=520 parameters defining the convolutional layer
 - 784 input neurons, 30 hidden neurons
 - total of 784×30, +30 biases, for a total of 23,550 parameters

POOLING

hidden neurons (output from feature map)

000000000000000000000000000000000000000	max-pooling units

FORWARD PROP

RESULTS/NOTES

- More convolutional layers and more hidden layers yielded better accuracy
- Later convolutions are harder to interpret

MAKING IMPROVEMENTS

ACTIVATION FUNCTIONS

- sigmoid
 - The og
- Tanh
 - Trains faster, similar results
- ReLU
 - Higher accuracy! we are pretty much clueless as to why

MORE DATA

- Expanded MNIST
 - 250,000 more images
- You can make more data with the data you have
 - Rotation, translation, skewing
 - Elastic distortion
 - GANs

OTHER IMPROVEMENTS

- Dropout
 - Not required for convolutional layers, since they're resistant to overfitting
- Ensemble learning (kinda not really)
- <u>Deep, Big, Simple Neural Nets Excel on Handwritten Digit Recognition</u>, by Dan Claudiu Cireșan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber (2010)
 - hella big network, trained for a hella long time with a hella fat GPU

BREAKTHROUGHS

LMRD (2012)

- Group of researchers from Stanford and Google
- Used a neural network to tackle ImageNet
 - 16 million+ images, 20,000+ classifications
- 9.3% to 15.8%

KSH (2012)

- DCNN for a restricted subset of ImageNet in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
 - 84.7% for top-5, 63.3% for restrictive metric
 - Split on 2 GPUs

KSH MODEL ARCHITECTURE

- Input is 3 x 244 x 244
 - Resize to 256 x 256, take 3 random 244 x 244 crops
- First layer: 96 | | x | | kernels, stride of 4, 3x3 max pooling with stride 2
- Second layer: 256 5x5 kernels with max pooling
- Third, Fourth, Fifth: More convolutions without pooling
- Sixth, Seventh: Fully connected layers of 4096 neurons each
- Final: 1000-unit softmax layer
- Used ReLU, L2 regularization, dropout, momentum-based minibatch SGD
- Has inspired later work

ILSVRC (2014)

- 93.33% accuracy from team based at Google
- The dude actually sat down and labeled data
- Better-than-human vision

OTHER STUFF

ADVERSARIAL EXAMPLES

RNNS

• Just like CNNs add spatial understanding, RNNs add temporal understanding

LSTMS

- RNNs take soooo long to train b/c they have unstable gradients
- "I grew up in France... I speak fluent French." (Long-term dependency problem)

DBNS, GENERATIVE MODELS

Deep Belief Network

- Generative model
- Unsupervised and semi-supervised
- GANs

INTENTION-DRIVEN USER INTERFACES

• Interfaces that can act on imprecision and discern the user's true intent

FUTURE OF NN?

- They've done a lot of amazing things recently
- But we don't understand them nearly well enough
 - Why is it that neural networks can generalize so well?
 - How is it that they avoid overfitting as well as they do, given the very large number of parameters they learn?
 - Why is it that stochastic gradient descent works as well as it does? How well will neural networks perform as data sets are scaled?
 - Why does pooling work?

CONWAY'S LAW

- "Any organization that designs a system... will inevitably produce a design whose structure is a copy of the organization's communication structure."
- Applies to the design and engineering of systems where we have a good understanding of the different parts
- Can't be applied directly to the development of AI because we don't know what the parts are.

FINAL THOUGHTS

- Medicine -> immunology, epidemiology, etc
- Deep learning is our "super-special weapon"
 - How powerful is it?
 - What other powerful idea will be needed for strong Al?
- We don't see a lot of specialized subfields yet, everything's built off the same ideas

