Neural Networks and Deep Learning, Chapter 4 The Universal Approximation Theorem

11/3/19 Jeffrey Yoo

Universal Approximation Theorem

- Neural networks with a single hidden layer can "compute" any functions.
- More precisely,

Let our desired function be f(x)¹ and output of neural network g(x)². Then, for any desired ϵ , we can guarantee

 $|g(x) - f(x)| < \epsilon$

Caveats

- 1. f(x) must be a continuous function
- 2. With sufficient number of hidden neurons

Universal Approximation Theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a nonconstant, bounded, and continuous function (called the *activation function*). Let I_m denote the *m*-dimensional unit hypercube $[0, 1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\varepsilon > 0$ and any function $f \in C(I_m)$, there exist an integer N, real constants $v_i, b_i \in \mathbb{R}$ and real vectors $w_i \in \mathbb{R}^m$ for i = 1, ..., N, such that we may define:

$$F(x) = \sum_{i=1}^N v_i arphi \left(w_i^T x + b_i
ight)$$
 .

as an approximate realization of the function f; that is,

$$|F(x)-f(x)|$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

This still holds when replacing I_m with any compact subset of \mathbb{R}^m .

General Idea

- How to approximate following function?
- Idea:
 - Use many step functions
 - Can do this using neural network with one layer of hidden neurons + sigmoid activation.

Example: one input variable

Example: one input variable

Example: one input variable

Multiple input variables

- The same idea can be generalized for multiple inputs
- Ex: If we have x and y as inputs, use "towers" to simulate f(x,y).

Example: Two inputs

Example: Two inputs

Other activation functions

- Recall we need our activation function to be a nonconstant, bounded, and continuous function.
- Would ReLU work?
- What about linear function $\phi(x) = x$?
- But...neural network with ReLU activation can be a universal approximator if its width is of n+4 (where n is input dimension)
- Paper: <u>https://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf</u>