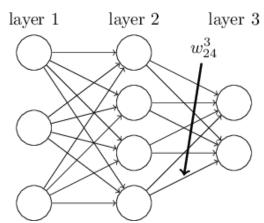
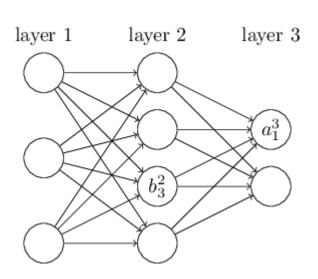
Backprop Chapter Summary

10/20/2019

Notation



 w_{jk}^{l} is the weight from the $k^{\rm th}$ neuron in the $(l-1)^{\rm th}$ layer to the $j^{\rm th}$ neuron in the $l^{\rm th}$ layer

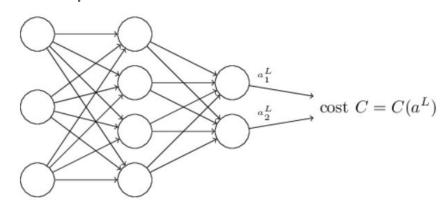


$$a_j^l = \sigma \left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l
ight) \qquad \quad a^l = \sigma(w^l a^{l-1} + b^l).$$

Goal of backprop

- Compute partial derivative of cost function with respect to any weight or bias in network
- Assumptions about cost function
 - Can be written as an average over individual training examples
 - Can be written as a function of outputs from NN

$$C = \frac{1}{n} \sum_{x} C_x$$



Example cost function

$$C = rac{1}{2} \|y - a^L\|^2 = rac{1}{2} \sum_i (y_j - a_j^L)^2$$

Error of neuron

$$\delta_j^l \equiv rac{\partial C}{\partial z_j^l}.$$

- z_i represents the input to the activation of the jth neuron in the Ith layer
- Larger error means changes in z_j¹ will have larger impact
 To reduce cost, move z_j¹ in the opposite direction of the error

Four fundamental equations behind backprop

- Equation for error of output layer
- Equation for error in terms of error of next layer
- Equation for rate of change of cost with respect to any bias in the network
- Equation for rate of change of cost with respect to any weight in the network

Equation for error of output layer

$$\delta_j^L = rac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$$

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

Equation for error in terms of error of next layer

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

Equation for rate of change of cost with respect to any bias in the network

$$rac{\partial C}{\partial b_j^l} = \delta_j^l$$

Equation for rate of change of cost with respect to any weight in the network

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$$

Backprop Algorithm

- 1. **Input** x: Set the corresponding activation a^1 for the input layer.
- 2. **Feedforward:** For each $l=2,3,\ldots,L$ compute $z^l=w^la^{l-1}+b^l$ and $a^l=\sigma(z^l)$.
- 3. **Output error** δ^L : Compute the vector $\delta^L = \nabla_a C \odot \sigma'(z^L)$.
- 4. Backpropagate the error: For each l = L 1, L 2, ..., 2 compute $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$.
- 5. **Output:** The gradient of the cost function is given by $\frac{\partial C}{\partial w_{ik}^l} = a_k^{l-1} \delta_j^l$ and $\frac{\partial C}{\partial b_i^l} = \delta_j^l$.

Stochastic Gradient Descent

- 1. Input a set of training examples
- 2. For each training example x: Set the corresponding input activation $a^{x,1}$, and perform the following steps:
 - \circ **Feedforward:** For each $l=2,3,\ldots,L$ compute $z^{x,l}=w^la^{x,l-1}+b^l$ and $a^{x,l}=\sigma(z^{x,l}).$
 - Output error $\delta^{x,L}$: Compute the vector $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L})$.
 - Backpropagate the error: For each

$$l=L-1,L-2,\ldots,2$$
 compute $\delta^{x,l}=((w^{l+1})^T\delta^{x,l+1})\odot\sigma'(z^{x,l}).$

3. **Gradient descent:** For each $l=L,L-1,\ldots,2$ update the weights according to the rule $w^l\to w^l-\frac{\eta}{m}\sum_x \delta^{x,l}(a^{x,l-1})^T$, and the biases according to the rule $b^l\to b^l-\frac{\eta}{m}\sum_x \delta^{x,l}$.