
QData Undergraduate
Reading Group (QURG)

First Meeting
Friday, October 4th, 2019

AI Resources

**these are just the things i use,
pls suggest more

DLNN Chapter 1

● Brief review of each section
○ Ask questions!

● Work through selected exercises together
● If you didn’t actually write the code, that’s ok

Intro
● Neural networks are different from conventional programming– we

don’t teach them rules, we establish boundaries which enable them to
learn from data

● Until 2006, we couldn’t really train them well
○ The early 2000s (pre-2006) were a dark time for research on

neural networks
○ Big breakthrough: “A fast learning algorithm for deep belief nets”

(Hinton, 2006)
○ Second big breakthrough: CNNs in 2012

● This book: provides an intuition about neural networks (hopefully)

Using neural nets to recognize handwritten digits

● This is easy to tell a human to do, but hard to teach a computer

● Our visual cortex has 140 million neurons, interconnected in a complex way

● MNIST

An aside: popular datasets

Perceptrons & Sigmoid neurons

Exercise 1/7

Sigmoid neurons simulating perceptrons, part I
Suppose we take all the weights and biases in a network of perceptrons, and
multiply them by a positive constant, c>0. Show that the behaviour of the
network doesn't change.

Perceptrons & Sigmoid neurons

Exercise 2/7

Sigmoid neurons simulating perceptrons, part II

Suppose we have the same setup as the last problem - a network of
perceptrons. Suppose also that the overall input to the network of perceptrons
has been chosen. We won't need the actual input value, we just need the input
to have been fixed. Suppose the weights and biases are such that w⋅x+b≠0 for
the input x to any particular perceptron in the network.

Now replace all the perceptrons in the network by sigmoid neurons, and
multiply the weights and biases by a positive constant c>0.

Show that in the limit as c→∞ the behaviour of this network of sigmoid neurons
is exactly the same as the network of perceptrons. How can this fail when
w⋅x+b=0 for one of the perceptrons?

The architecture of neural networks

Exercise 3/7
There is a way of determining the
bitwise representation of a digit by
adding an extra layer to the
three-layer network above.

The extra layer converts the output
from the previous layer into a binary
representation, as illustrated in the
figure below. Find a set of weights
and biases for the new output layer.
Assume that the first 3 layers of
neurons are such that the correct
output in the third layer (i.e., the old
output layer) has activation at least
0.99, and incorrect outputs have
activation less than 0.01.

Learning with gradient descent

Learning with gradient descent

Exercise 4/7

Prove the assertion of the last paragraph. Hint: If you're not already familiar with
the Cauchy-Schwarz inequality, you may find it helpful to familiarize yourself
with it.

(The last paragraph)

Indeed, there's even a sense in which gradient descent is the optimal strategy for
searching for a minimum. Let's suppose that we're trying to make a move Δv in
position so as to decrease C as much as possible. This is equivalent to
minimizing ΔC≈∇C⋅Δv. We'll constrain the size of the move so that ǁΔvǁ=ϵ for
some small fixed ϵ>0. In other words, we want a move that is a small step of a fixed
size, and we're trying to find the movement direction which decreases C as much
as possible.

It can be proved that the choice of Δv which minimizes ∇C⋅Δv is Δv=−η∇C, where
η=ϵ/ǁ∇Cǁ is determined by the size constraint ǁΔvǁ=ϵ. So gradient descent can be
viewed as a way of taking small steps in the direction which does the most to
immediately decrease C.

http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

Learning with gradient descent

Exercise 5/7

I explained gradient descent when C is a function of two variables, and when it's
a function of more than two variables.

What happens when C is a function of just one variable? Can you provide a
geometric interpretation of what gradient descent is doing in the
one-dimensional case?

Learning with gradient descent

Learning with gradient descent

Exercise 6/7

An extreme version of gradient descent is to use a mini-batch size of just 1. That is, given a training
input, x, we update our weights and biases according to the rules

wk→wk′=wk−η∂Cx/∂wk (1)
bl→bl′=bl−η∂Cx/∂bl (2)

Then we choose another training input, and update the weights and biases again. And so on,
repeatedly. This procedure is known as online or incremental learning. In online learning, a neural
network learns from just one training input at a time (just as human beings do). Name one advantage
and one disadvantage of online learning, compared to stochastic gradient descent with a mini-batch
size of, say, 20.

Implementing the network to classify digits

Bonus Exercise

Try creating a network with just two layers - an input and an output layer, no
hidden layer - with 784 and 10 neurons, respectively. Train the network using
stochastic gradient descent. What classification accuracy can you achieve?

93.2%

Implementing the network to classify digits

93.2%
jm8wx 10/4/19
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='sgd',
 loss='mean_squared_error’,
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10)

model.evaluate(x_test, y_test, verbose=2)

Exercise 7/7

Write out Equation (22) in component form, and verify that it gives the same
result as the rule (4) for computing the output of a sigmoid neuron.

Implementing the network to classify digits

Toward deep learning

● Since 2006, we’ve been able to train deeper networks on more data
● Training tricks & strategies, network architectures, etc. improve every year
● Advances in hardware match advances in software
● CPUs > GPUs > TPUs

A bit of inspiration

● Two of the most important innovations in deep learning have been 1-line
changes to the training process

● Dropout: just randomly set 50% of the neurons to 0 every training step
● Batch normalization: normalize and shift the inputs to each layer to reduce

variance

Project Talk Time

🗣

